Description: The union of a quotient set. More restrictive antecedent; kept for backward compatibility; for new work, prefer uniqs . (Contributed by NM, 9-Dec-2008) (Proof shortened by AV, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniqsw | |- ( R e. V -> U. ( A /. R ) = ( R " A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg | |- ( R e. V -> ( R |` A ) e. _V ) |
|
| 2 | uniqs | |- ( ( R |` A ) e. _V -> U. ( A /. R ) = ( R " A ) ) |
|
| 3 | 1 2 | syl | |- ( R e. V -> U. ( A /. R ) = ( R " A ) ) |