| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlkn |
⊢ ( 𝑁 ClWWalksN 𝐺 ) = { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } |
| 2 |
|
wrdnfi |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ Fin ) |
| 3 |
|
clwwlksswrd |
⊢ ( ClWWalks ‘ 𝐺 ) ⊆ Word ( Vtx ‘ 𝐺 ) |
| 4 |
|
rabss2 |
⊢ ( ( ClWWalks ‘ 𝐺 ) ⊆ Word ( Vtx ‘ 𝐺 ) → { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ⊆ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) |
| 5 |
3 4
|
mp1i |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ⊆ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) |
| 6 |
2 5
|
ssfid |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ Fin ) |
| 7 |
1 6
|
eqeltrid |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 ClWWalksN 𝐺 ) ∈ Fin ) |