| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0csh0 | ⊢ ( ∅  cyclShift  0 )  =  ∅ | 
						
							| 2 |  | oveq1 | ⊢ ( ∅  =  𝑊  →  ( ∅  cyclShift  0 )  =  ( 𝑊  cyclShift  0 ) ) | 
						
							| 3 |  | id | ⊢ ( ∅  =  𝑊  →  ∅  =  𝑊 ) | 
						
							| 4 | 1 2 3 | 3eqtr3a | ⊢ ( ∅  =  𝑊  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) | 
						
							| 5 | 4 | a1d | ⊢ ( ∅  =  𝑊  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) ) | 
						
							| 6 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 7 |  | cshword | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  0  ∈  ℤ )  →  ( 𝑊  cyclShift  0 )  =  ( ( 𝑊  substr  〈 ( 0  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 0  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  0 )  =  ( ( 𝑊  substr  〈 ( 0  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 0  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ≠  𝑊 )  →  ( 𝑊  cyclShift  0 )  =  ( ( 𝑊  substr  〈 ( 0  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 0  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 10 |  | necom | ⊢ ( ∅  ≠  𝑊  ↔  𝑊  ≠  ∅ ) | 
						
							| 11 |  | lennncl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 12 |  | nnrp | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) | 
						
							| 13 |  | 0mod | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  →  ( 0  mod  ( ♯ ‘ 𝑊 ) )  =  0 ) | 
						
							| 14 | 13 | opeq1d | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  →  〈 ( 0  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉  =  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  →  ( 𝑊  substr  〈 ( 0  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) | 
						
							| 16 | 13 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  →  ( 𝑊  prefix  ( 0  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊  prefix  0 ) ) | 
						
							| 17 | 15 16 | oveq12d | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  →  ( ( 𝑊  substr  〈 ( 0  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 0  mod  ( ♯ ‘ 𝑊 ) ) ) )  =  ( ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  0 ) ) ) | 
						
							| 18 | 11 12 17 | 3syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( ( 𝑊  substr  〈 ( 0  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 0  mod  ( ♯ ‘ 𝑊 ) ) ) )  =  ( ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  0 ) ) ) | 
						
							| 19 | 10 18 | sylan2b | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ≠  𝑊 )  →  ( ( 𝑊  substr  〈 ( 0  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 0  mod  ( ♯ ‘ 𝑊 ) ) ) )  =  ( ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  0 ) ) ) | 
						
							| 20 | 9 19 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ≠  𝑊 )  →  ( 𝑊  cyclShift  0 )  =  ( ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  0 ) ) ) | 
						
							| 21 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 22 |  | pfxval | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0 )  →  ( 𝑊  prefix  ( ♯ ‘ 𝑊 ) )  =  ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) | 
						
							| 23 | 21 22 | mpdan | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  ( ♯ ‘ 𝑊 ) )  =  ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) | 
						
							| 24 |  | pfxid | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 25 | 23 24 | eqtr3d | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  𝑊 ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ≠  𝑊 )  →  ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  𝑊 ) | 
						
							| 27 |  | pfx00 | ⊢ ( 𝑊  prefix  0 )  =  ∅ | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ≠  𝑊 )  →  ( 𝑊  prefix  0 )  =  ∅ ) | 
						
							| 29 | 26 28 | oveq12d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ≠  𝑊 )  →  ( ( 𝑊  substr  〈 0 ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  0 ) )  =  ( 𝑊  ++  ∅ ) ) | 
						
							| 30 |  | ccatrid | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ++  ∅ )  =  𝑊 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ≠  𝑊 )  →  ( 𝑊  ++  ∅ )  =  𝑊 ) | 
						
							| 32 | 20 29 31 | 3eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ≠  𝑊 )  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) | 
						
							| 33 | 32 | expcom | ⊢ ( ∅  ≠  𝑊  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) ) | 
						
							| 34 | 5 33 | pm2.61ine | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) |