| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0csh0 |
⊢ ( ∅ cyclShift 0 ) = ∅ |
| 2 |
|
oveq1 |
⊢ ( ∅ = 𝑊 → ( ∅ cyclShift 0 ) = ( 𝑊 cyclShift 0 ) ) |
| 3 |
|
id |
⊢ ( ∅ = 𝑊 → ∅ = 𝑊 ) |
| 4 |
1 2 3
|
3eqtr3a |
⊢ ( ∅ = 𝑊 → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
| 5 |
4
|
a1d |
⊢ ( ∅ = 𝑊 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) ) |
| 6 |
|
0z |
⊢ 0 ∈ ℤ |
| 7 |
|
cshword |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ ) → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 8 |
6 7
|
mpan2 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 10 |
|
necom |
⊢ ( ∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅ ) |
| 11 |
|
lennncl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 12 |
|
nnrp |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 13 |
|
0mod |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( 0 mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 14 |
13
|
opeq1d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) |
| 15 |
14
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ) |
| 16 |
13
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 prefix 0 ) ) |
| 17 |
15 16
|
oveq12d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
| 18 |
11 12 17
|
3syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
| 19 |
10 18
|
sylan2b |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
| 20 |
9 19
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
| 21 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 22 |
|
pfxval |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ) |
| 23 |
21 22
|
mpdan |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ) |
| 24 |
|
pfxid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
| 25 |
23 24
|
eqtr3d |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) = 𝑊 ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) = 𝑊 ) |
| 27 |
|
pfx00 |
⊢ ( 𝑊 prefix 0 ) = ∅ |
| 28 |
27
|
a1i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 prefix 0 ) = ∅ ) |
| 29 |
26 28
|
oveq12d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) = ( 𝑊 ++ ∅ ) ) |
| 30 |
|
ccatrid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ++ ∅ ) = 𝑊 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 ++ ∅ ) = 𝑊 ) |
| 32 |
20 29 31
|
3eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
| 33 |
32
|
expcom |
⊢ ( ∅ ≠ 𝑊 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) ) |
| 34 |
5 33
|
pm2.61ine |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) |