| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0csh0 | ⊢ ( ∅  cyclShift  𝑁 )  =  ∅ | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑊  =  ∅  →  ( 𝑊  cyclShift  𝑁 )  =  ( ∅  cyclShift  𝑁 ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑊  =  ∅  →  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ∅  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 4 |  | 0csh0 | ⊢ ( ∅  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  =  ∅ | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( 𝑊  =  ∅  →  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  =  ∅ ) | 
						
							| 6 | 1 2 5 | 3eqtr4a | ⊢ ( 𝑊  =  ∅  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 7 | 6 | a1d | ⊢ ( 𝑊  =  ∅  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 8 |  | lennncl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ≠  ∅  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  ≠  ∅  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 11 | 10 | impcom | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 12 |  | simprr | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  𝑁  ∈  ℤ ) | 
						
							| 13 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 14 |  | nnrp | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) | 
						
							| 15 |  | modabs2 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℝ+ )  →  ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 16 | 13 14 15 | syl2anr | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 17 | 16 | opeq1d | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  〈 ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉  =  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  substr  〈 ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) ) | 
						
							| 19 | 16 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  prefix  ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 20 | 18 19 | oveq12d | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑊  substr  〈 ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) )  =  ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 21 | 11 12 20 | syl2anc | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑊  substr  〈 ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) )  =  ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 22 |  | simprl | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 23 | 12 11 | zmodcld | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ℕ0 ) | 
						
							| 24 | 23 | nn0zd | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ℤ ) | 
						
							| 25 |  | cshword | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ℤ )  →  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ( 𝑊  substr  〈 ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 26 | 22 24 25 | syl2anc | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ( 𝑊  substr  〈 ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 27 |  | cshword | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  cyclShift  𝑁 )  =  ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 29 | 21 26 28 | 3eqtr4rd | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝑊  ≠  ∅  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 31 | 7 30 | pm2.61ine | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) |