Metamath Proof Explorer


Theorem posdifd

Description: Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1
|- ( ph -> A e. RR )
ltnegd.2
|- ( ph -> B e. RR )
Assertion posdifd
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) )

Proof

Step Hyp Ref Expression
1 leidd.1
 |-  ( ph -> A e. RR )
2 ltnegd.2
 |-  ( ph -> B e. RR )
3 posdif
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A < B <-> 0 < ( B - A ) ) )