Description: Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
ltnegd.2 | |- ( ph -> B e. RR ) |
||
Assertion | posdifd | |- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | |- ( ph -> A e. RR ) |
|
2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
3 | posdif | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |