Metamath Proof Explorer


Theorem posdif

Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion posdif
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) )

Proof

Step Hyp Ref Expression
1 resubcl
 |-  ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR )
2 1 ancoms
 |-  ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR )
3 simpl
 |-  ( ( A e. RR /\ B e. RR ) -> A e. RR )
4 ltaddpos
 |-  ( ( ( B - A ) e. RR /\ A e. RR ) -> ( 0 < ( B - A ) <-> A < ( A + ( B - A ) ) ) )
5 2 3 4 syl2anc
 |-  ( ( A e. RR /\ B e. RR ) -> ( 0 < ( B - A ) <-> A < ( A + ( B - A ) ) ) )
6 recn
 |-  ( A e. RR -> A e. CC )
7 recn
 |-  ( B e. RR -> B e. CC )
8 pncan3
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + ( B - A ) ) = B )
9 6 7 8 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + ( B - A ) ) = B )
10 9 breq2d
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < ( A + ( B - A ) ) <-> A < B ) )
11 5 10 bitr2d
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) )