| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( ( # ` W ) = 0 -> ( N - ( # ` W ) ) = ( N - 0 ) ) | 
						
							| 2 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 3 | 2 | subid1d |  |-  ( N e. ZZ -> ( N - 0 ) = N ) | 
						
							| 4 | 3 | adantl |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( N - 0 ) = N ) | 
						
							| 5 | 1 4 | sylan9eq |  |-  ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N - ( # ` W ) ) = N ) | 
						
							| 6 | 5 | eqcomd |  |-  ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> N = ( N - ( # ` W ) ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) | 
						
							| 8 | 7 | ex |  |-  ( ( # ` W ) = 0 -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) ) | 
						
							| 9 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 10 | 9 | adantl |  |-  ( ( W e. Word V /\ N e. ZZ ) -> N e. RR ) | 
						
							| 11 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 12 |  | elnnne0 |  |-  ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) ) | 
						
							| 13 |  | nnrp |  |-  ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) | 
						
							| 14 | 12 13 | sylbir |  |-  ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( # ` W ) e. RR+ ) | 
						
							| 15 | 14 | ex |  |-  ( ( # ` W ) e. NN0 -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) | 
						
							| 16 | 11 15 | syl |  |-  ( W e. Word V -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) | 
						
							| 18 | 17 | impcom |  |-  ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( # ` W ) e. RR+ ) | 
						
							| 19 |  | modeqmodmin |  |-  ( ( N e. RR /\ ( # ` W ) e. RR+ ) -> ( N mod ( # ` W ) ) = ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) | 
						
							| 20 | 10 18 19 | syl2an2 |  |-  ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N mod ( # ` W ) ) = ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) | 
						
							| 22 |  | cshwmodn |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) | 
						
							| 24 |  | simpl |  |-  ( ( W e. Word V /\ N e. ZZ ) -> W e. Word V ) | 
						
							| 25 | 11 | nn0zd |  |-  ( W e. Word V -> ( # ` W ) e. ZZ ) | 
						
							| 26 |  | zsubcl |  |-  ( ( N e. ZZ /\ ( # ` W ) e. ZZ ) -> ( N - ( # ` W ) ) e. ZZ ) | 
						
							| 27 | 25 26 | sylan2 |  |-  ( ( N e. ZZ /\ W e. Word V ) -> ( N - ( # ` W ) ) e. ZZ ) | 
						
							| 28 | 27 | ancoms |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( N - ( # ` W ) ) e. ZZ ) | 
						
							| 29 | 24 28 | jca |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) ) | 
						
							| 31 |  | cshwmodn |  |-  ( ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) -> ( W cyclShift ( N - ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N - ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) | 
						
							| 33 | 21 23 32 | 3eqtr4d |  |-  ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) | 
						
							| 34 | 33 | ex |  |-  ( ( # ` W ) =/= 0 -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) ) | 
						
							| 35 | 8 34 | pm2.61ine |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |