| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlk.r |  | 
						
							| 2 |  | vex |  | 
						
							| 3 |  | vex |  | 
						
							| 4 |  | vex |  | 
						
							| 5 | 1 | erclwwlkeqlen |  | 
						
							| 6 | 5 | 3adant3 |  | 
						
							| 7 | 1 | erclwwlkeqlen |  | 
						
							| 8 | 7 | 3adant1 |  | 
						
							| 9 | 1 | erclwwlkeq |  | 
						
							| 10 | 9 | 3adant1 |  | 
						
							| 11 | 1 | erclwwlkeq |  | 
						
							| 12 | 11 | 3adant3 |  | 
						
							| 13 |  | simpr1 |  | 
						
							| 14 |  | simplr2 |  | 
						
							| 15 |  | oveq2 |  | 
						
							| 16 | 15 | eqeq2d |  | 
						
							| 17 | 16 | cbvrexvw |  | 
						
							| 18 |  | oveq2 |  | 
						
							| 19 | 18 | eqeq2d |  | 
						
							| 20 | 19 | cbvrexvw |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 21 | clwwlkbp |  | 
						
							| 23 | 22 | simp2d |  | 
						
							| 24 | 23 | ad2antlr |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 | 24 25 | cshwcsh2id |  | 
						
							| 27 | 26 | exp5l |  | 
						
							| 28 | 27 | imp41 |  | 
						
							| 29 | 28 | rexlimdva |  | 
						
							| 30 | 29 | rexlimdva2 |  | 
						
							| 31 | 20 30 | syl7bi |  | 
						
							| 32 | 17 31 | biimtrid |  | 
						
							| 33 | 32 | exp31 |  | 
						
							| 34 | 33 | com15 |  | 
						
							| 35 | 34 | impcom |  | 
						
							| 36 | 35 | 3adant1 |  | 
						
							| 37 | 36 | impcom |  | 
						
							| 38 | 37 | com13 |  | 
						
							| 39 | 38 | 3impia |  | 
						
							| 40 | 39 | impcom |  | 
						
							| 41 | 13 14 40 | 3jca |  | 
						
							| 42 | 1 | erclwwlkeq |  | 
						
							| 43 | 42 | 3adant2 |  | 
						
							| 44 | 41 43 | syl5ibrcom |  | 
						
							| 45 | 44 | exp31 |  | 
						
							| 46 | 45 | com24 |  | 
						
							| 47 | 46 | ex |  | 
						
							| 48 | 47 | com4t |  | 
						
							| 49 | 12 48 | sylbid |  | 
						
							| 50 | 49 | com25 |  | 
						
							| 51 | 10 50 | sylbid |  | 
						
							| 52 | 8 51 | mpdd |  | 
						
							| 53 | 52 | com24 |  | 
						
							| 54 | 6 53 | mpdd |  | 
						
							| 55 | 54 | impd |  | 
						
							| 56 | 2 3 4 55 | mp3an |  |