Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlk.r |
|
2 |
|
vex |
|
3 |
|
vex |
|
4 |
|
vex |
|
5 |
1
|
erclwwlkeqlen |
|
6 |
5
|
3adant3 |
|
7 |
1
|
erclwwlkeqlen |
|
8 |
7
|
3adant1 |
|
9 |
1
|
erclwwlkeq |
|
10 |
9
|
3adant1 |
|
11 |
1
|
erclwwlkeq |
|
12 |
11
|
3adant3 |
|
13 |
|
simpr1 |
|
14 |
|
simplr2 |
|
15 |
|
oveq2 |
|
16 |
15
|
eqeq2d |
|
17 |
16
|
cbvrexvw |
|
18 |
|
oveq2 |
|
19 |
18
|
eqeq2d |
|
20 |
19
|
cbvrexvw |
|
21 |
|
eqid |
|
22 |
21
|
clwwlkbp |
|
23 |
22
|
simp2d |
|
24 |
23
|
ad2antlr |
|
25 |
|
simpr |
|
26 |
24 25
|
cshwcsh2id |
|
27 |
26
|
exp5l |
|
28 |
27
|
imp41 |
|
29 |
28
|
rexlimdva |
|
30 |
29
|
rexlimdva2 |
|
31 |
20 30
|
syl7bi |
|
32 |
17 31
|
syl5bi |
|
33 |
32
|
exp31 |
|
34 |
33
|
com15 |
|
35 |
34
|
impcom |
|
36 |
35
|
3adant1 |
|
37 |
36
|
impcom |
|
38 |
37
|
com13 |
|
39 |
38
|
3impia |
|
40 |
39
|
impcom |
|
41 |
13 14 40
|
3jca |
|
42 |
1
|
erclwwlkeq |
|
43 |
42
|
3adant2 |
|
44 |
41 43
|
syl5ibrcom |
|
45 |
44
|
exp31 |
|
46 |
45
|
com24 |
|
47 |
46
|
ex |
|
48 |
47
|
com4t |
|
49 |
12 48
|
sylbid |
|
50 |
49
|
com25 |
|
51 |
10 50
|
sylbid |
|
52 |
8 51
|
mpdd |
|
53 |
52
|
com24 |
|
54 |
6 53
|
mpdd |
|
55 |
54
|
impd |
|
56 |
2 3 4 55
|
mp3an |
|