Description: .~ is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | erclwwlk.r | |
|
Assertion | erclwwlktr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | |
|
2 | vex | |
|
3 | vex | |
|
4 | vex | |
|
5 | 1 | erclwwlkeqlen | |
6 | 5 | 3adant3 | |
7 | 1 | erclwwlkeqlen | |
8 | 7 | 3adant1 | |
9 | 1 | erclwwlkeq | |
10 | 9 | 3adant1 | |
11 | 1 | erclwwlkeq | |
12 | 11 | 3adant3 | |
13 | simpr1 | |
|
14 | simplr2 | |
|
15 | oveq2 | |
|
16 | 15 | eqeq2d | |
17 | 16 | cbvrexvw | |
18 | oveq2 | |
|
19 | 18 | eqeq2d | |
20 | 19 | cbvrexvw | |
21 | eqid | |
|
22 | 21 | clwwlkbp | |
23 | 22 | simp2d | |
24 | 23 | ad2antlr | |
25 | simpr | |
|
26 | 24 25 | cshwcsh2id | |
27 | 26 | exp5l | |
28 | 27 | imp41 | |
29 | 28 | rexlimdva | |
30 | 29 | rexlimdva2 | |
31 | 20 30 | syl7bi | |
32 | 17 31 | biimtrid | |
33 | 32 | exp31 | |
34 | 33 | com15 | |
35 | 34 | impcom | |
36 | 35 | 3adant1 | |
37 | 36 | impcom | |
38 | 37 | com13 | |
39 | 38 | 3impia | |
40 | 39 | impcom | |
41 | 13 14 40 | 3jca | |
42 | 1 | erclwwlkeq | |
43 | 42 | 3adant2 | |
44 | 41 43 | syl5ibrcom | |
45 | 44 | exp31 | |
46 | 45 | com24 | |
47 | 46 | ex | |
48 | 47 | com4t | |
49 | 12 48 | sylbid | |
50 | 49 | com25 | |
51 | 10 50 | sylbid | |
52 | 8 51 | mpdd | |
53 | 52 | com24 | |
54 | 6 53 | mpdd | |
55 | 54 | impd | |
56 | 2 3 4 55 | mp3an | |