| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlk.r |  | 
						
							| 2 | 1 | erclwwlkeqlen |  | 
						
							| 3 | 1 | erclwwlkeq |  | 
						
							| 4 |  | simpl2 |  | 
						
							| 5 |  | simpl1 |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 6 | clwwlkbp |  | 
						
							| 8 | 7 | simp2d |  | 
						
							| 9 | 8 | ad2antlr |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 9 10 | cshwcshid |  | 
						
							| 12 | 11 | expd |  | 
						
							| 13 | 12 | rexlimdv |  | 
						
							| 14 | 13 | ex |  | 
						
							| 15 | 14 | com23 |  | 
						
							| 16 | 15 | 3impia |  | 
						
							| 17 | 16 | imp |  | 
						
							| 18 |  | oveq2 |  | 
						
							| 19 | 18 | eqeq2d |  | 
						
							| 20 | 19 | cbvrexvw |  | 
						
							| 21 | 17 20 | sylibr |  | 
						
							| 22 | 4 5 21 | 3jca |  | 
						
							| 23 | 1 | erclwwlkeq |  | 
						
							| 24 | 23 | ancoms |  | 
						
							| 25 | 22 24 | imbitrrid |  | 
						
							| 26 | 25 | expd |  | 
						
							| 27 | 3 26 | sylbid |  | 
						
							| 28 | 2 27 | mpdd |  | 
						
							| 29 | 28 | el2v |  |