Metamath Proof Explorer


Theorem erclwwlkref

Description: .~ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 29-Apr-2021)

Ref Expression
Hypothesis erclwwlk.r ˙ = u w | u ClWWalks G w ClWWalks G n 0 w u = w cyclShift n
Assertion erclwwlkref x ClWWalks G x ˙ x

Proof

Step Hyp Ref Expression
1 erclwwlk.r ˙ = u w | u ClWWalks G w ClWWalks G n 0 w u = w cyclShift n
2 anidm x ClWWalks G x ClWWalks G x ClWWalks G
3 2 anbi1i x ClWWalks G x ClWWalks G n 0 x x = x cyclShift n x ClWWalks G n 0 x x = x cyclShift n
4 df-3an x ClWWalks G x ClWWalks G n 0 x x = x cyclShift n x ClWWalks G x ClWWalks G n 0 x x = x cyclShift n
5 eqid Vtx G = Vtx G
6 5 clwwlkbp x ClWWalks G G V x Word Vtx G x
7 cshw0 x Word Vtx G x cyclShift 0 = x
8 0nn0 0 0
9 8 a1i x Word Vtx G 0 0
10 lencl x Word Vtx G x 0
11 hashge0 x Word Vtx G 0 x
12 elfz2nn0 0 0 x 0 0 x 0 0 x
13 9 10 11 12 syl3anbrc x Word Vtx G 0 0 x
14 eqcom x cyclShift 0 = x x = x cyclShift 0
15 14 biimpi x cyclShift 0 = x x = x cyclShift 0
16 oveq2 n = 0 x cyclShift n = x cyclShift 0
17 16 rspceeqv 0 0 x x = x cyclShift 0 n 0 x x = x cyclShift n
18 13 15 17 syl2an x Word Vtx G x cyclShift 0 = x n 0 x x = x cyclShift n
19 7 18 mpdan x Word Vtx G n 0 x x = x cyclShift n
20 19 3ad2ant2 G V x Word Vtx G x n 0 x x = x cyclShift n
21 6 20 syl x ClWWalks G n 0 x x = x cyclShift n
22 21 pm4.71i x ClWWalks G x ClWWalks G n 0 x x = x cyclShift n
23 3 4 22 3bitr4ri x ClWWalks G x ClWWalks G x ClWWalks G n 0 x x = x cyclShift n
24 1 erclwwlkeq x V x V x ˙ x x ClWWalks G x ClWWalks G n 0 x x = x cyclShift n
25 24 el2v x ˙ x x ClWWalks G x ClWWalks G n 0 x x = x cyclShift n
26 23 25 bitr4i x ClWWalks G x ˙ x