Step |
Hyp |
Ref |
Expression |
1 |
|
estrcbasbas.c |
|- C = ( ExtStrCat ` U ) |
2 |
|
estrcbasbas.b |
|- B = ( Base ` C ) |
3 |
|
estrcbasbas.u |
|- ( ph -> U e. WUni ) |
4 |
1 3
|
estrcbas |
|- ( ph -> U = ( Base ` C ) ) |
5 |
2 4
|
eqtr4id |
|- ( ph -> B = U ) |
6 |
5
|
eleq2d |
|- ( ph -> ( E e. B <-> E e. U ) ) |
7 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
8 |
|
simpl |
|- ( ( U e. WUni /\ E e. U ) -> U e. WUni ) |
9 |
|
simpr |
|- ( ( U e. WUni /\ E e. U ) -> E e. U ) |
10 |
7 8 9
|
wunstr |
|- ( ( U e. WUni /\ E e. U ) -> ( Base ` E ) e. U ) |
11 |
10
|
ex |
|- ( U e. WUni -> ( E e. U -> ( Base ` E ) e. U ) ) |
12 |
3 11
|
syl |
|- ( ph -> ( E e. U -> ( Base ` E ) e. U ) ) |
13 |
6 12
|
sylbid |
|- ( ph -> ( E e. B -> ( Base ` E ) e. U ) ) |
14 |
13
|
imp |
|- ( ( ph /\ E e. B ) -> ( Base ` E ) e. U ) |