Metamath Proof Explorer


Theorem eu2

Description: An alternate way of defining existential uniqueness. Definition 6.10 of TakeutiZaring p. 26. (Contributed by NM, 8-Jul-1994) (Proof shortened by Wolf Lammen, 2-Dec-2018)

Ref Expression
Hypothesis eu2.nf
|- F/ y ph
Assertion eu2
|- ( E! x ph <-> ( E. x ph /\ A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) )

Proof

Step Hyp Ref Expression
1 eu2.nf
 |-  F/ y ph
2 df-eu
 |-  ( E! x ph <-> ( E. x ph /\ E* x ph ) )
3 1 mo3
 |-  ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) )
4 3 anbi2i
 |-  ( ( E. x ph /\ E* x ph ) <-> ( E. x ph /\ A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) )
5 2 4 bitri
 |-  ( E! x ph <-> ( E. x ph /\ A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) )