| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							moanim.1 | 
							 |-  F/ x ph  | 
						
						
							| 2 | 
							
								
							 | 
							euex | 
							 |-  ( E! x ( ph /\ ps ) -> E. x ( ph /\ ps ) )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ph /\ ps ) -> ph )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							exlimi | 
							 |-  ( E. x ( ph /\ ps ) -> ph )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							syl | 
							 |-  ( E! x ( ph /\ ps ) -> ph )  | 
						
						
							| 6 | 
							
								
							 | 
							ibar | 
							 |-  ( ph -> ( ps <-> ( ph /\ ps ) ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							eubid | 
							 |-  ( ph -> ( E! x ps <-> E! x ( ph /\ ps ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimprcd | 
							 |-  ( E! x ( ph /\ ps ) -> ( ph -> E! x ps ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							jcai | 
							 |-  ( E! x ( ph /\ ps ) -> ( ph /\ E! x ps ) )  | 
						
						
							| 10 | 
							
								7
							 | 
							biimpa | 
							 |-  ( ( ph /\ E! x ps ) -> E! x ( ph /\ ps ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							impbii | 
							 |-  ( E! x ( ph /\ ps ) <-> ( ph /\ E! x ps ) )  |