Description: Formula-building rule for the unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994) (Proof shortened by Wolf Lammen, 19-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eubid.1 | |- F/ x ph  | 
					|
| eubid.2 | |- ( ph -> ( ps <-> ch ) )  | 
					||
| Assertion | eubid | |- ( ph -> ( E! x ps <-> E! x ch ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eubid.1 | |- F/ x ph  | 
						|
| 2 | eubid.2 | |- ( ph -> ( ps <-> ch ) )  | 
						|
| 3 | 1 2 | alrimi | |- ( ph -> A. x ( ps <-> ch ) )  | 
						
| 4 | eubi | |- ( A. x ( ps <-> ch ) -> ( E! x ps <-> E! x ch ) )  | 
						|
| 5 | 3 4 | syl | |- ( ph -> ( E! x ps <-> E! x ch ) )  |