Metamath Proof Explorer


Theorem eubid

Description: Formula-building rule for the unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994) (Proof shortened by Wolf Lammen, 19-Feb-2023)

Ref Expression
Hypotheses eubid.1 xφ
eubid.2 φψχ
Assertion eubid φ∃!xψ∃!xχ

Proof

Step Hyp Ref Expression
1 eubid.1 xφ
2 eubid.2 φψχ
3 1 2 alrimi φxψχ
4 eubi xψχ∃!xψ∃!xχ
5 3 4 syl φ∃!xψ∃!xχ