Metamath Proof Explorer


Theorem euendfunc2

Description: If there exists a unique endofunctor (a functor from a category to itself) for a category, then it is either initial (empty) or terminal. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion euendfunc2
|- ( ( C Func C ) ~~ 1o -> ( ( Base ` C ) = (/) \/ C e. TermCat ) )

Proof

Step Hyp Ref Expression
1 euen1b
 |-  ( ( C Func C ) ~~ 1o <-> E! f f e. ( C Func C ) )
2 1 biimpi
 |-  ( ( C Func C ) ~~ 1o -> E! f f e. ( C Func C ) )
3 2 adantr
 |-  ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> E! f f e. ( C Func C ) )
4 eqid
 |-  ( Base ` C ) = ( Base ` C )
5 simpr
 |-  ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> -. ( Base ` C ) = (/) )
6 5 neqned
 |-  ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> ( Base ` C ) =/= (/) )
7 3 4 6 euendfunc
 |-  ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> C e. TermCat )
8 7 ex
 |-  ( ( C Func C ) ~~ 1o -> ( -. ( Base ` C ) = (/) -> C e. TermCat ) )
9 8 orrd
 |-  ( ( C Func C ) ~~ 1o -> ( ( Base ` C ) = (/) \/ C e. TermCat ) )