| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euen1b |
|- ( ( C Func C ) ~~ 1o <-> E! f f e. ( C Func C ) ) |
| 2 |
1
|
biimpi |
|- ( ( C Func C ) ~~ 1o -> E! f f e. ( C Func C ) ) |
| 3 |
2
|
adantr |
|- ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> E! f f e. ( C Func C ) ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
|
simpr |
|- ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> -. ( Base ` C ) = (/) ) |
| 6 |
5
|
neqned |
|- ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> ( Base ` C ) =/= (/) ) |
| 7 |
3 4 6
|
euendfunc |
|- ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> C e. TermCat ) |
| 8 |
7
|
ex |
|- ( ( C Func C ) ~~ 1o -> ( -. ( Base ` C ) = (/) -> C e. TermCat ) ) |
| 9 |
8
|
orrd |
|- ( ( C Func C ) ~~ 1o -> ( ( Base ` C ) = (/) \/ C e. TermCat ) ) |