| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euen1b |
⊢ ( ( 𝐶 Func 𝐶 ) ≈ 1o ↔ ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 2 |
1
|
biimpi |
⊢ ( ( 𝐶 Func 𝐶 ) ≈ 1o → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( ( 𝐶 Func 𝐶 ) ≈ 1o ∧ ¬ ( Base ‘ 𝐶 ) = ∅ ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
|
simpr |
⊢ ( ( ( 𝐶 Func 𝐶 ) ≈ 1o ∧ ¬ ( Base ‘ 𝐶 ) = ∅ ) → ¬ ( Base ‘ 𝐶 ) = ∅ ) |
| 6 |
5
|
neqned |
⊢ ( ( ( 𝐶 Func 𝐶 ) ≈ 1o ∧ ¬ ( Base ‘ 𝐶 ) = ∅ ) → ( Base ‘ 𝐶 ) ≠ ∅ ) |
| 7 |
3 4 6
|
euendfunc |
⊢ ( ( ( 𝐶 Func 𝐶 ) ≈ 1o ∧ ¬ ( Base ‘ 𝐶 ) = ∅ ) → 𝐶 ∈ TermCat ) |
| 8 |
7
|
ex |
⊢ ( ( 𝐶 Func 𝐶 ) ≈ 1o → ( ¬ ( Base ‘ 𝐶 ) = ∅ → 𝐶 ∈ TermCat ) ) |
| 9 |
8
|
orrd |
⊢ ( ( 𝐶 Func 𝐶 ) ≈ 1o → ( ( Base ‘ 𝐶 ) = ∅ ∨ 𝐶 ∈ TermCat ) ) |