Metamath Proof Explorer


Theorem eupth2lem3lem5

Description: Lemma for eupth2 . (Contributed by AV, 25-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v
|- V = ( Vtx ` G )
trlsegvdeg.i
|- I = ( iEdg ` G )
trlsegvdeg.f
|- ( ph -> Fun I )
trlsegvdeg.n
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) )
trlsegvdeg.u
|- ( ph -> U e. V )
trlsegvdeg.w
|- ( ph -> F ( Trails ` G ) P )
trlsegvdeg.vx
|- ( ph -> ( Vtx ` X ) = V )
trlsegvdeg.vy
|- ( ph -> ( Vtx ` Y ) = V )
trlsegvdeg.vz
|- ( ph -> ( Vtx ` Z ) = V )
trlsegvdeg.ix
|- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) )
trlsegvdeg.iy
|- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } )
trlsegvdeg.iz
|- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) )
eupth2lem3.o
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) )
eupth2lem3.e
|- ( ph -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } )
Assertion eupth2lem3lem5
|- ( ph -> ( I ` ( F ` N ) ) e. ~P V )

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v
 |-  V = ( Vtx ` G )
2 trlsegvdeg.i
 |-  I = ( iEdg ` G )
3 trlsegvdeg.f
 |-  ( ph -> Fun I )
4 trlsegvdeg.n
 |-  ( ph -> N e. ( 0 ..^ ( # ` F ) ) )
5 trlsegvdeg.u
 |-  ( ph -> U e. V )
6 trlsegvdeg.w
 |-  ( ph -> F ( Trails ` G ) P )
7 trlsegvdeg.vx
 |-  ( ph -> ( Vtx ` X ) = V )
8 trlsegvdeg.vy
 |-  ( ph -> ( Vtx ` Y ) = V )
9 trlsegvdeg.vz
 |-  ( ph -> ( Vtx ` Z ) = V )
10 trlsegvdeg.ix
 |-  ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) )
11 trlsegvdeg.iy
 |-  ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } )
12 trlsegvdeg.iz
 |-  ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) )
13 eupth2lem3.o
 |-  ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) )
14 eupth2lem3.e
 |-  ( ph -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } )
15 1 2 3 4 5 6 trlsegvdeglem1
 |-  ( ph -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) )
16 prelpwi
 |-  ( ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) -> { ( P ` N ) , ( P ` ( N + 1 ) ) } e. ~P V )
17 15 16 syl
 |-  ( ph -> { ( P ` N ) , ( P ` ( N + 1 ) ) } e. ~P V )
18 14 17 eqeltrd
 |-  ( ph -> ( I ` ( F ` N ) ) e. ~P V )