| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupth2.v |
|- V = ( Vtx ` G ) |
| 2 |
|
eupth2.i |
|- I = ( iEdg ` G ) |
| 3 |
|
eupth2.g |
|- ( ph -> G e. UPGraph ) |
| 4 |
|
eupth2.f |
|- ( ph -> Fun I ) |
| 5 |
|
eupth2.p |
|- ( ph -> F ( EulerPaths ` G ) P ) |
| 6 |
|
eqid |
|- <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. |
| 7 |
1 2 3 4 5 6
|
eupthvdres |
|- ( ph -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = ( VtxDeg ` G ) ) |
| 8 |
7
|
fveq1d |
|- ( ph -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) = ( ( VtxDeg ` G ) ` x ) ) |
| 9 |
8
|
breq2d |
|- ( ph -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` x ) ) ) |
| 10 |
9
|
notbid |
|- ( ph -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` x ) ) ) |
| 11 |
10
|
rabbidv |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) |
| 12 |
|
eupthiswlk |
|- ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P ) |
| 13 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
| 14 |
5 12 13
|
3syl |
|- ( ph -> ( # ` F ) e. NN0 ) |
| 15 |
|
nn0re |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. RR ) |
| 16 |
15
|
leidd |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) <_ ( # ` F ) ) |
| 17 |
|
breq1 |
|- ( m = 0 -> ( m <_ ( # ` F ) <-> 0 <_ ( # ` F ) ) ) |
| 18 |
|
oveq2 |
|- ( m = 0 -> ( 0 ..^ m ) = ( 0 ..^ 0 ) ) |
| 19 |
18
|
imaeq2d |
|- ( m = 0 -> ( F " ( 0 ..^ m ) ) = ( F " ( 0 ..^ 0 ) ) ) |
| 20 |
19
|
reseq2d |
|- ( m = 0 -> ( I |` ( F " ( 0 ..^ m ) ) ) = ( I |` ( F " ( 0 ..^ 0 ) ) ) ) |
| 21 |
20
|
opeq2d |
|- ( m = 0 -> <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) |
| 22 |
21
|
fveq2d |
|- ( m = 0 -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) = ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) |
| 23 |
22
|
fveq1d |
|- ( m = 0 -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) = ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
| 24 |
23
|
breq2d |
|- ( m = 0 -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) ) |
| 25 |
24
|
notbid |
|- ( m = 0 -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) ) |
| 26 |
25
|
rabbidv |
|- ( m = 0 -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } ) |
| 27 |
|
fveq2 |
|- ( m = 0 -> ( P ` m ) = ( P ` 0 ) ) |
| 28 |
27
|
eqeq2d |
|- ( m = 0 -> ( ( P ` 0 ) = ( P ` m ) <-> ( P ` 0 ) = ( P ` 0 ) ) ) |
| 29 |
27
|
preq2d |
|- ( m = 0 -> { ( P ` 0 ) , ( P ` m ) } = { ( P ` 0 ) , ( P ` 0 ) } ) |
| 30 |
28 29
|
ifbieq2d |
|- ( m = 0 -> if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) |
| 31 |
26 30
|
eqeq12d |
|- ( m = 0 -> ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) <-> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) ) |
| 32 |
17 31
|
imbi12d |
|- ( m = 0 -> ( ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) <-> ( 0 <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) ) ) |
| 33 |
32
|
imbi2d |
|- ( m = 0 -> ( ( ph -> ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) ) <-> ( ph -> ( 0 <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) ) ) ) |
| 34 |
|
breq1 |
|- ( m = n -> ( m <_ ( # ` F ) <-> n <_ ( # ` F ) ) ) |
| 35 |
|
oveq2 |
|- ( m = n -> ( 0 ..^ m ) = ( 0 ..^ n ) ) |
| 36 |
35
|
imaeq2d |
|- ( m = n -> ( F " ( 0 ..^ m ) ) = ( F " ( 0 ..^ n ) ) ) |
| 37 |
36
|
reseq2d |
|- ( m = n -> ( I |` ( F " ( 0 ..^ m ) ) ) = ( I |` ( F " ( 0 ..^ n ) ) ) ) |
| 38 |
37
|
opeq2d |
|- ( m = n -> <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) |
| 39 |
38
|
fveq2d |
|- ( m = n -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) = ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ) |
| 40 |
39
|
fveq1d |
|- ( m = n -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) = ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) ) |
| 41 |
40
|
breq2d |
|- ( m = n -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) ) ) |
| 42 |
41
|
notbid |
|- ( m = n -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) ) ) |
| 43 |
42
|
rabbidv |
|- ( m = n -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } ) |
| 44 |
|
fveq2 |
|- ( m = n -> ( P ` m ) = ( P ` n ) ) |
| 45 |
44
|
eqeq2d |
|- ( m = n -> ( ( P ` 0 ) = ( P ` m ) <-> ( P ` 0 ) = ( P ` n ) ) ) |
| 46 |
44
|
preq2d |
|- ( m = n -> { ( P ` 0 ) , ( P ` m ) } = { ( P ` 0 ) , ( P ` n ) } ) |
| 47 |
45 46
|
ifbieq2d |
|- ( m = n -> if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) |
| 48 |
43 47
|
eqeq12d |
|- ( m = n -> ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) <-> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) |
| 49 |
34 48
|
imbi12d |
|- ( m = n -> ( ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) <-> ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) ) |
| 50 |
49
|
imbi2d |
|- ( m = n -> ( ( ph -> ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) ) <-> ( ph -> ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) ) ) |
| 51 |
|
breq1 |
|- ( m = ( n + 1 ) -> ( m <_ ( # ` F ) <-> ( n + 1 ) <_ ( # ` F ) ) ) |
| 52 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( 0 ..^ m ) = ( 0 ..^ ( n + 1 ) ) ) |
| 53 |
52
|
imaeq2d |
|- ( m = ( n + 1 ) -> ( F " ( 0 ..^ m ) ) = ( F " ( 0 ..^ ( n + 1 ) ) ) ) |
| 54 |
53
|
reseq2d |
|- ( m = ( n + 1 ) -> ( I |` ( F " ( 0 ..^ m ) ) ) = ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) ) |
| 55 |
54
|
opeq2d |
|- ( m = ( n + 1 ) -> <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) |
| 56 |
55
|
fveq2d |
|- ( m = ( n + 1 ) -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) = ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ) |
| 57 |
56
|
fveq1d |
|- ( m = ( n + 1 ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) = ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) ) |
| 58 |
57
|
breq2d |
|- ( m = ( n + 1 ) -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) ) ) |
| 59 |
58
|
notbid |
|- ( m = ( n + 1 ) -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) ) ) |
| 60 |
59
|
rabbidv |
|- ( m = ( n + 1 ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } ) |
| 61 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( P ` m ) = ( P ` ( n + 1 ) ) ) |
| 62 |
61
|
eqeq2d |
|- ( m = ( n + 1 ) -> ( ( P ` 0 ) = ( P ` m ) <-> ( P ` 0 ) = ( P ` ( n + 1 ) ) ) ) |
| 63 |
61
|
preq2d |
|- ( m = ( n + 1 ) -> { ( P ` 0 ) , ( P ` m ) } = { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) |
| 64 |
62 63
|
ifbieq2d |
|- ( m = ( n + 1 ) -> if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) |
| 65 |
60 64
|
eqeq12d |
|- ( m = ( n + 1 ) -> ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) <-> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) |
| 66 |
51 65
|
imbi12d |
|- ( m = ( n + 1 ) -> ( ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) <-> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |
| 67 |
66
|
imbi2d |
|- ( m = ( n + 1 ) -> ( ( ph -> ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) ) <-> ( ph -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) ) |
| 68 |
|
breq1 |
|- ( m = ( # ` F ) -> ( m <_ ( # ` F ) <-> ( # ` F ) <_ ( # ` F ) ) ) |
| 69 |
|
oveq2 |
|- ( m = ( # ` F ) -> ( 0 ..^ m ) = ( 0 ..^ ( # ` F ) ) ) |
| 70 |
69
|
imaeq2d |
|- ( m = ( # ` F ) -> ( F " ( 0 ..^ m ) ) = ( F " ( 0 ..^ ( # ` F ) ) ) ) |
| 71 |
70
|
reseq2d |
|- ( m = ( # ` F ) -> ( I |` ( F " ( 0 ..^ m ) ) ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) ) |
| 72 |
71
|
opeq2d |
|- ( m = ( # ` F ) -> <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) |
| 73 |
72
|
fveq2d |
|- ( m = ( # ` F ) -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) = ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ) |
| 74 |
73
|
fveq1d |
|- ( m = ( # ` F ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) = ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) ) |
| 75 |
74
|
breq2d |
|- ( m = ( # ` F ) -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) ) ) |
| 76 |
75
|
notbid |
|- ( m = ( # ` F ) -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) ) ) |
| 77 |
76
|
rabbidv |
|- ( m = ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } ) |
| 78 |
|
fveq2 |
|- ( m = ( # ` F ) -> ( P ` m ) = ( P ` ( # ` F ) ) ) |
| 79 |
78
|
eqeq2d |
|- ( m = ( # ` F ) -> ( ( P ` 0 ) = ( P ` m ) <-> ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 80 |
78
|
preq2d |
|- ( m = ( # ` F ) -> { ( P ` 0 ) , ( P ` m ) } = { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) |
| 81 |
79 80
|
ifbieq2d |
|- ( m = ( # ` F ) -> if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) |
| 82 |
77 81
|
eqeq12d |
|- ( m = ( # ` F ) -> ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) <-> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) |
| 83 |
68 82
|
imbi12d |
|- ( m = ( # ` F ) -> ( ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) <-> ( ( # ` F ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) ) |
| 84 |
83
|
imbi2d |
|- ( m = ( # ` F ) -> ( ( ph -> ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) ) <-> ( ph -> ( ( # ` F ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) ) ) |
| 85 |
1 2 3 4 5
|
eupth2lemb |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = (/) ) |
| 86 |
|
eqid |
|- ( P ` 0 ) = ( P ` 0 ) |
| 87 |
86
|
iftruei |
|- if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) = (/) |
| 88 |
85 87
|
eqtr4di |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) |
| 89 |
88
|
a1d |
|- ( ph -> ( 0 <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) ) |
| 90 |
1 2 3 4 5
|
eupth2lems |
|- ( ( ph /\ n e. NN0 ) -> ( ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |
| 91 |
90
|
expcom |
|- ( n e. NN0 -> ( ph -> ( ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) ) |
| 92 |
91
|
a2d |
|- ( n e. NN0 -> ( ( ph -> ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( ph -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) ) |
| 93 |
33 50 67 84 89 92
|
nn0ind |
|- ( ( # ` F ) e. NN0 -> ( ph -> ( ( # ` F ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) ) |
| 94 |
16 93
|
mpid |
|- ( ( # ` F ) e. NN0 -> ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) |
| 95 |
14 94
|
mpcom |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) |
| 96 |
11 95
|
eqtr3d |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) |