| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupth2.v |
|- V = ( Vtx ` G ) |
| 2 |
|
eupth2.i |
|- I = ( iEdg ` G ) |
| 3 |
|
eupth2.g |
|- ( ph -> G e. UPGraph ) |
| 4 |
|
eupth2.f |
|- ( ph -> Fun I ) |
| 5 |
|
eupth2.p |
|- ( ph -> F ( EulerPaths ` G ) P ) |
| 6 |
|
z0even |
|- 2 || 0 |
| 7 |
1
|
fvexi |
|- V e. _V |
| 8 |
2
|
fvexi |
|- I e. _V |
| 9 |
8
|
resex |
|- ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V |
| 10 |
7 9
|
pm3.2i |
|- ( V e. _V /\ ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V ) |
| 11 |
|
opvtxfv |
|- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V ) -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = V ) |
| 12 |
10 11
|
mp1i |
|- ( ph -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = V ) |
| 13 |
12
|
eqcomd |
|- ( ph -> V = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) |
| 14 |
13
|
eleq2d |
|- ( ph -> ( x e. V <-> x e. ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) ) |
| 15 |
14
|
biimpa |
|- ( ( ph /\ x e. V ) -> x e. ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) |
| 16 |
|
opiedgfv |
|- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V ) -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( I |` ( F " ( 0 ..^ 0 ) ) ) ) |
| 17 |
10 16
|
mp1i |
|- ( ph -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( I |` ( F " ( 0 ..^ 0 ) ) ) ) |
| 18 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 19 |
18
|
imaeq2i |
|- ( F " ( 0 ..^ 0 ) ) = ( F " (/) ) |
| 20 |
|
ima0 |
|- ( F " (/) ) = (/) |
| 21 |
19 20
|
eqtri |
|- ( F " ( 0 ..^ 0 ) ) = (/) |
| 22 |
21
|
reseq2i |
|- ( I |` ( F " ( 0 ..^ 0 ) ) ) = ( I |` (/) ) |
| 23 |
|
res0 |
|- ( I |` (/) ) = (/) |
| 24 |
22 23
|
eqtri |
|- ( I |` ( F " ( 0 ..^ 0 ) ) ) = (/) |
| 25 |
17 24
|
eqtrdi |
|- ( ph -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = (/) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ x e. V ) -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = (/) ) |
| 27 |
|
eqid |
|- ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) |
| 28 |
|
eqid |
|- ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) |
| 29 |
27 28
|
vtxdg0e |
|- ( ( x e. ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) /\ ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = (/) ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) = 0 ) |
| 30 |
15 26 29
|
syl2anc |
|- ( ( ph /\ x e. V ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) = 0 ) |
| 31 |
6 30
|
breqtrrid |
|- ( ( ph /\ x e. V ) -> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
| 32 |
31
|
notnotd |
|- ( ( ph /\ x e. V ) -> -. -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
| 33 |
32
|
ralrimiva |
|- ( ph -> A. x e. V -. -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
| 34 |
|
rabeq0 |
|- ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = (/) <-> A. x e. V -. -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
| 35 |
33 34
|
sylibr |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = (/) ) |