Metamath Proof Explorer


Theorem eupth2lemb

Description: Lemma for eupth2 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)

Ref Expression
Hypotheses eupth2.v V=VtxG
eupth2.i I=iEdgG
eupth2.g φGUPGraph
eupth2.f φFunI
eupth2.p φFEulerPathsGP
Assertion eupth2lemb φxV|¬2VtxDegVIF0..^0x=

Proof

Step Hyp Ref Expression
1 eupth2.v V=VtxG
2 eupth2.i I=iEdgG
3 eupth2.g φGUPGraph
4 eupth2.f φFunI
5 eupth2.p φFEulerPathsGP
6 z0even 20
7 1 fvexi VV
8 2 fvexi IV
9 8 resex IF0..^0V
10 7 9 pm3.2i VVIF0..^0V
11 opvtxfv VVIF0..^0VVtxVIF0..^0=V
12 10 11 mp1i φVtxVIF0..^0=V
13 12 eqcomd φV=VtxVIF0..^0
14 13 eleq2d φxVxVtxVIF0..^0
15 14 biimpa φxVxVtxVIF0..^0
16 opiedgfv VVIF0..^0ViEdgVIF0..^0=IF0..^0
17 10 16 mp1i φiEdgVIF0..^0=IF0..^0
18 fzo0 0..^0=
19 18 imaeq2i F0..^0=F
20 ima0 F=
21 19 20 eqtri F0..^0=
22 21 reseq2i IF0..^0=I
23 res0 I=
24 22 23 eqtri IF0..^0=
25 17 24 eqtrdi φiEdgVIF0..^0=
26 25 adantr φxViEdgVIF0..^0=
27 eqid VtxVIF0..^0=VtxVIF0..^0
28 eqid iEdgVIF0..^0=iEdgVIF0..^0
29 27 28 vtxdg0e xVtxVIF0..^0iEdgVIF0..^0=VtxDegVIF0..^0x=0
30 15 26 29 syl2anc φxVVtxDegVIF0..^0x=0
31 6 30 breqtrrid φxV2VtxDegVIF0..^0x
32 31 notnotd φxV¬¬2VtxDegVIF0..^0x
33 32 ralrimiva φxV¬¬2VtxDegVIF0..^0x
34 rabeq0 xV|¬2VtxDegVIF0..^0x=xV¬¬2VtxDegVIF0..^0x
35 33 34 sylibr φxV|¬2VtxDegVIF0..^0x=