| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupth2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
eupth2.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
eupth2.g |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| 4 |
|
eupth2.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 5 |
|
eupth2.p |
⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) |
| 6 |
|
z0even |
⊢ 2 ∥ 0 |
| 7 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 8 |
2
|
fvexi |
⊢ 𝐼 ∈ V |
| 9 |
8
|
resex |
⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ∈ V |
| 10 |
7 9
|
pm3.2i |
⊢ ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ∈ V ) |
| 11 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = 𝑉 ) |
| 12 |
10 11
|
mp1i |
⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = 𝑉 ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝜑 → 𝑉 = ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ) |
| 14 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ) ) |
| 15 |
14
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ) |
| 16 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ) |
| 17 |
10 16
|
mp1i |
⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ) |
| 18 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
| 19 |
18
|
imaeq2i |
⊢ ( 𝐹 “ ( 0 ..^ 0 ) ) = ( 𝐹 “ ∅ ) |
| 20 |
|
ima0 |
⊢ ( 𝐹 “ ∅ ) = ∅ |
| 21 |
19 20
|
eqtri |
⊢ ( 𝐹 “ ( 0 ..^ 0 ) ) = ∅ |
| 22 |
21
|
reseq2i |
⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) = ( 𝐼 ↾ ∅ ) |
| 23 |
|
res0 |
⊢ ( 𝐼 ↾ ∅ ) = ∅ |
| 24 |
22 23
|
eqtri |
⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) = ∅ |
| 25 |
17 24
|
eqtrdi |
⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ∅ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ∅ ) |
| 27 |
|
eqid |
⊢ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) |
| 28 |
|
eqid |
⊢ ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) |
| 29 |
27 28
|
vtxdg0e |
⊢ ( ( 𝑥 ∈ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ∧ ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ∅ ) → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) = 0 ) |
| 30 |
15 26 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) = 0 ) |
| 31 |
6 30
|
breqtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 32 |
31
|
notnotd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ¬ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 34 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 35 |
33 34
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = ∅ ) |