Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdgf.v |
β’ π = ( Vtx β πΊ ) |
2 |
|
vtxdg0e.i |
β’ πΌ = ( iEdg β πΊ ) |
3 |
2
|
eqeq1i |
β’ ( πΌ = β
β ( iEdg β πΊ ) = β
) |
4 |
|
dmeq |
β’ ( ( iEdg β πΊ ) = β
β dom ( iEdg β πΊ ) = dom β
) |
5 |
|
dm0 |
β’ dom β
= β
|
6 |
4 5
|
eqtrdi |
β’ ( ( iEdg β πΊ ) = β
β dom ( iEdg β πΊ ) = β
) |
7 |
|
0fin |
β’ β
β Fin |
8 |
6 7
|
eqeltrdi |
β’ ( ( iEdg β πΊ ) = β
β dom ( iEdg β πΊ ) β Fin ) |
9 |
3 8
|
sylbi |
β’ ( πΌ = β
β dom ( iEdg β πΊ ) β Fin ) |
10 |
|
simpl |
β’ ( ( π β π β§ πΌ = β
) β π β π ) |
11 |
|
eqid |
β’ ( iEdg β πΊ ) = ( iEdg β πΊ ) |
12 |
|
eqid |
β’ dom ( iEdg β πΊ ) = dom ( iEdg β πΊ ) |
13 |
1 11 12
|
vtxdgfival |
β’ ( ( dom ( iEdg β πΊ ) β Fin β§ π β π ) β ( ( VtxDeg β πΊ ) β π ) = ( ( β― β { π₯ β dom ( iEdg β πΊ ) β£ π β ( ( iEdg β πΊ ) β π₯ ) } ) + ( β― β { π₯ β dom ( iEdg β πΊ ) β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) ) ) |
14 |
9 10 13
|
syl2an2 |
β’ ( ( π β π β§ πΌ = β
) β ( ( VtxDeg β πΊ ) β π ) = ( ( β― β { π₯ β dom ( iEdg β πΊ ) β£ π β ( ( iEdg β πΊ ) β π₯ ) } ) + ( β― β { π₯ β dom ( iEdg β πΊ ) β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) ) ) |
15 |
3 6
|
sylbi |
β’ ( πΌ = β
β dom ( iEdg β πΊ ) = β
) |
16 |
15
|
adantl |
β’ ( ( π β π β§ πΌ = β
) β dom ( iEdg β πΊ ) = β
) |
17 |
|
rabeq |
β’ ( dom ( iEdg β πΊ ) = β
β { π₯ β dom ( iEdg β πΊ ) β£ π β ( ( iEdg β πΊ ) β π₯ ) } = { π₯ β β
β£ π β ( ( iEdg β πΊ ) β π₯ ) } ) |
18 |
|
rab0 |
β’ { π₯ β β
β£ π β ( ( iEdg β πΊ ) β π₯ ) } = β
|
19 |
17 18
|
eqtrdi |
β’ ( dom ( iEdg β πΊ ) = β
β { π₯ β dom ( iEdg β πΊ ) β£ π β ( ( iEdg β πΊ ) β π₯ ) } = β
) |
20 |
19
|
fveq2d |
β’ ( dom ( iEdg β πΊ ) = β
β ( β― β { π₯ β dom ( iEdg β πΊ ) β£ π β ( ( iEdg β πΊ ) β π₯ ) } ) = ( β― β β
) ) |
21 |
|
hash0 |
β’ ( β― β β
) = 0 |
22 |
20 21
|
eqtrdi |
β’ ( dom ( iEdg β πΊ ) = β
β ( β― β { π₯ β dom ( iEdg β πΊ ) β£ π β ( ( iEdg β πΊ ) β π₯ ) } ) = 0 ) |
23 |
|
rabeq |
β’ ( dom ( iEdg β πΊ ) = β
β { π₯ β dom ( iEdg β πΊ ) β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } = { π₯ β β
β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) |
24 |
23
|
fveq2d |
β’ ( dom ( iEdg β πΊ ) = β
β ( β― β { π₯ β dom ( iEdg β πΊ ) β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) = ( β― β { π₯ β β
β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) ) |
25 |
|
rab0 |
β’ { π₯ β β
β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } = β
|
26 |
25
|
fveq2i |
β’ ( β― β { π₯ β β
β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) = ( β― β β
) |
27 |
26 21
|
eqtri |
β’ ( β― β { π₯ β β
β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) = 0 |
28 |
24 27
|
eqtrdi |
β’ ( dom ( iEdg β πΊ ) = β
β ( β― β { π₯ β dom ( iEdg β πΊ ) β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) = 0 ) |
29 |
22 28
|
oveq12d |
β’ ( dom ( iEdg β πΊ ) = β
β ( ( β― β { π₯ β dom ( iEdg β πΊ ) β£ π β ( ( iEdg β πΊ ) β π₯ ) } ) + ( β― β { π₯ β dom ( iEdg β πΊ ) β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) ) = ( 0 + 0 ) ) |
30 |
16 29
|
syl |
β’ ( ( π β π β§ πΌ = β
) β ( ( β― β { π₯ β dom ( iEdg β πΊ ) β£ π β ( ( iEdg β πΊ ) β π₯ ) } ) + ( β― β { π₯ β dom ( iEdg β πΊ ) β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) ) = ( 0 + 0 ) ) |
31 |
|
00id |
β’ ( 0 + 0 ) = 0 |
32 |
30 31
|
eqtrdi |
β’ ( ( π β π β§ πΌ = β
) β ( ( β― β { π₯ β dom ( iEdg β πΊ ) β£ π β ( ( iEdg β πΊ ) β π₯ ) } ) + ( β― β { π₯ β dom ( iEdg β πΊ ) β£ ( ( iEdg β πΊ ) β π₯ ) = { π } } ) ) = 0 ) |
33 |
14 32
|
eqtrd |
β’ ( ( π β π β§ πΌ = β
) β ( ( VtxDeg β πΊ ) β π ) = 0 ) |