Metamath Proof Explorer


Theorem vtxdg0e

Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a KΓΆnigsberg graph (see also the induction steps vdegp1ai , vdegp1bi and vdegp1ci ). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypotheses vtxdgf.v ⊒ 𝑉 = ( Vtx β€˜ 𝐺 )
vtxdg0e.i ⊒ 𝐼 = ( iEdg β€˜ 𝐺 )
Assertion vtxdg0e ( ( π‘ˆ ∈ 𝑉 ∧ 𝐼 = βˆ… ) β†’ ( ( VtxDeg β€˜ 𝐺 ) β€˜ π‘ˆ ) = 0 )

Proof

Step Hyp Ref Expression
1 vtxdgf.v ⊒ 𝑉 = ( Vtx β€˜ 𝐺 )
2 vtxdg0e.i ⊒ 𝐼 = ( iEdg β€˜ 𝐺 )
3 2 eqeq1i ⊒ ( 𝐼 = βˆ… ↔ ( iEdg β€˜ 𝐺 ) = βˆ… )
4 dmeq ⊒ ( ( iEdg β€˜ 𝐺 ) = βˆ… β†’ dom ( iEdg β€˜ 𝐺 ) = dom βˆ… )
5 dm0 ⊒ dom βˆ… = βˆ…
6 4 5 eqtrdi ⊒ ( ( iEdg β€˜ 𝐺 ) = βˆ… β†’ dom ( iEdg β€˜ 𝐺 ) = βˆ… )
7 0fin ⊒ βˆ… ∈ Fin
8 6 7 eqeltrdi ⊒ ( ( iEdg β€˜ 𝐺 ) = βˆ… β†’ dom ( iEdg β€˜ 𝐺 ) ∈ Fin )
9 3 8 sylbi ⊒ ( 𝐼 = βˆ… β†’ dom ( iEdg β€˜ 𝐺 ) ∈ Fin )
10 simpl ⊒ ( ( π‘ˆ ∈ 𝑉 ∧ 𝐼 = βˆ… ) β†’ π‘ˆ ∈ 𝑉 )
11 eqid ⊒ ( iEdg β€˜ 𝐺 ) = ( iEdg β€˜ 𝐺 )
12 eqid ⊒ dom ( iEdg β€˜ 𝐺 ) = dom ( iEdg β€˜ 𝐺 )
13 1 11 12 vtxdgfival ⊒ ( ( dom ( iEdg β€˜ 𝐺 ) ∈ Fin ∧ π‘ˆ ∈ 𝑉 ) β†’ ( ( VtxDeg β€˜ 𝐺 ) β€˜ π‘ˆ ) = ( ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } ) + ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) ) )
14 9 10 13 syl2an2 ⊒ ( ( π‘ˆ ∈ 𝑉 ∧ 𝐼 = βˆ… ) β†’ ( ( VtxDeg β€˜ 𝐺 ) β€˜ π‘ˆ ) = ( ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } ) + ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) ) )
15 3 6 sylbi ⊒ ( 𝐼 = βˆ… β†’ dom ( iEdg β€˜ 𝐺 ) = βˆ… )
16 15 adantl ⊒ ( ( π‘ˆ ∈ 𝑉 ∧ 𝐼 = βˆ… ) β†’ dom ( iEdg β€˜ 𝐺 ) = βˆ… )
17 rabeq ⊒ ( dom ( iEdg β€˜ 𝐺 ) = βˆ… β†’ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } = { π‘₯ ∈ βˆ… ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } )
18 rab0 ⊒ { π‘₯ ∈ βˆ… ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } = βˆ…
19 17 18 eqtrdi ⊒ ( dom ( iEdg β€˜ 𝐺 ) = βˆ… β†’ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } = βˆ… )
20 19 fveq2d ⊒ ( dom ( iEdg β€˜ 𝐺 ) = βˆ… β†’ ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } ) = ( β™― β€˜ βˆ… ) )
21 hash0 ⊒ ( β™― β€˜ βˆ… ) = 0
22 20 21 eqtrdi ⊒ ( dom ( iEdg β€˜ 𝐺 ) = βˆ… β†’ ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } ) = 0 )
23 rabeq ⊒ ( dom ( iEdg β€˜ 𝐺 ) = βˆ… β†’ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } = { π‘₯ ∈ βˆ… ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } )
24 23 fveq2d ⊒ ( dom ( iEdg β€˜ 𝐺 ) = βˆ… β†’ ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) = ( β™― β€˜ { π‘₯ ∈ βˆ… ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) )
25 rab0 ⊒ { π‘₯ ∈ βˆ… ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } = βˆ…
26 25 fveq2i ⊒ ( β™― β€˜ { π‘₯ ∈ βˆ… ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) = ( β™― β€˜ βˆ… )
27 26 21 eqtri ⊒ ( β™― β€˜ { π‘₯ ∈ βˆ… ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) = 0
28 24 27 eqtrdi ⊒ ( dom ( iEdg β€˜ 𝐺 ) = βˆ… β†’ ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) = 0 )
29 22 28 oveq12d ⊒ ( dom ( iEdg β€˜ 𝐺 ) = βˆ… β†’ ( ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } ) + ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) ) = ( 0 + 0 ) )
30 16 29 syl ⊒ ( ( π‘ˆ ∈ 𝑉 ∧ 𝐼 = βˆ… ) β†’ ( ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } ) + ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) ) = ( 0 + 0 ) )
31 00id ⊒ ( 0 + 0 ) = 0
32 30 31 eqtrdi ⊒ ( ( π‘ˆ ∈ 𝑉 ∧ 𝐼 = βˆ… ) β†’ ( ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ π‘ˆ ∈ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) } ) + ( β™― β€˜ { π‘₯ ∈ dom ( iEdg β€˜ 𝐺 ) ∣ ( ( iEdg β€˜ 𝐺 ) β€˜ π‘₯ ) = { π‘ˆ } } ) ) = 0 )
33 14 32 eqtrd ⊒ ( ( π‘ˆ ∈ 𝑉 ∧ 𝐼 = βˆ… ) β†’ ( ( VtxDeg β€˜ 𝐺 ) β€˜ π‘ˆ ) = 0 )