Step |
Hyp |
Ref |
Expression |
1 |
|
vdegp1ai.vg |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
vdegp1ai.u |
⊢ 𝑈 ∈ 𝑉 |
3 |
|
vdegp1ai.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
4 |
|
vdegp1ai.w |
⊢ 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } |
5 |
|
vdegp1ai.d |
⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃 |
6 |
|
vdegp1ai.vf |
⊢ ( Vtx ‘ 𝐹 ) = 𝑉 |
7 |
|
vdegp1ai.x |
⊢ 𝑋 ∈ 𝑉 |
8 |
|
vdegp1ai.xu |
⊢ 𝑋 ≠ 𝑈 |
9 |
|
vdegp1ai.y |
⊢ 𝑌 ∈ 𝑉 |
10 |
|
vdegp1ai.yu |
⊢ 𝑌 ≠ 𝑈 |
11 |
|
vdegp1ai.f |
⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) |
12 |
|
prex |
⊢ { 𝑋 , 𝑌 } ∈ V |
13 |
|
wrdf |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
14 |
13
|
ffund |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → Fun 𝐼 ) |
15 |
4 14
|
mp1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → Fun 𝐼 ) |
16 |
6
|
a1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( Vtx ‘ 𝐹 ) = 𝑉 ) |
17 |
|
wrdv |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 ∈ Word V ) |
18 |
4 17
|
ax-mp |
⊢ 𝐼 ∈ Word V |
19 |
|
cats1un |
⊢ ( ( 𝐼 ∈ Word V ∧ { 𝑋 , 𝑌 } ∈ V ) → ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } 〉 } ) ) |
20 |
18 19
|
mpan |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } 〉 } ) ) |
21 |
11 20
|
eqtrid |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } 〉 } ) ) |
22 |
|
fvexd |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( ♯ ‘ 𝐼 ) ∈ V ) |
23 |
|
wrdlndm |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) |
24 |
4 23
|
mp1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) |
25 |
2
|
a1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → 𝑈 ∈ 𝑉 ) |
26 |
|
id |
⊢ ( { 𝑋 , 𝑌 } ∈ V → { 𝑋 , 𝑌 } ∈ V ) |
27 |
8
|
necomi |
⊢ 𝑈 ≠ 𝑋 |
28 |
10
|
necomi |
⊢ 𝑈 ≠ 𝑌 |
29 |
27 28
|
prneli |
⊢ 𝑈 ∉ { 𝑋 , 𝑌 } |
30 |
29
|
a1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → 𝑈 ∉ { 𝑋 , 𝑌 } ) |
31 |
1 3 15 16 21 22 24 25 26 30
|
p1evtxdeq |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
32 |
12 31
|
ax-mp |
⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) |
33 |
32 5
|
eqtri |
⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = 𝑃 |