| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdegp1ai.vg |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
vdegp1ai.u |
⊢ 𝑈 ∈ 𝑉 |
| 3 |
|
vdegp1ai.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 4 |
|
vdegp1ai.w |
⊢ 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } |
| 5 |
|
vdegp1ai.d |
⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃 |
| 6 |
|
vdegp1ai.vf |
⊢ ( Vtx ‘ 𝐹 ) = 𝑉 |
| 7 |
|
vdegp1ai.x |
⊢ 𝑋 ∈ 𝑉 |
| 8 |
|
vdegp1ai.xu |
⊢ 𝑋 ≠ 𝑈 |
| 9 |
|
vdegp1ai.y |
⊢ 𝑌 ∈ 𝑉 |
| 10 |
|
vdegp1ai.yu |
⊢ 𝑌 ≠ 𝑈 |
| 11 |
|
vdegp1ai.f |
⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) |
| 12 |
|
prex |
⊢ { 𝑋 , 𝑌 } ∈ V |
| 13 |
|
wrdf |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 14 |
13
|
ffund |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → Fun 𝐼 ) |
| 15 |
4 14
|
mp1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → Fun 𝐼 ) |
| 16 |
6
|
a1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( Vtx ‘ 𝐹 ) = 𝑉 ) |
| 17 |
|
wrdv |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 ∈ Word V ) |
| 18 |
4 17
|
ax-mp |
⊢ 𝐼 ∈ Word V |
| 19 |
|
cats1un |
⊢ ( ( 𝐼 ∈ Word V ∧ { 𝑋 , 𝑌 } ∈ V ) → ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } 〉 } ) ) |
| 20 |
18 19
|
mpan |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } 〉 } ) ) |
| 21 |
11 20
|
eqtrid |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } 〉 } ) ) |
| 22 |
|
fvexd |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( ♯ ‘ 𝐼 ) ∈ V ) |
| 23 |
|
wrdlndm |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) |
| 24 |
4 23
|
mp1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) |
| 25 |
2
|
a1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → 𝑈 ∈ 𝑉 ) |
| 26 |
|
id |
⊢ ( { 𝑋 , 𝑌 } ∈ V → { 𝑋 , 𝑌 } ∈ V ) |
| 27 |
8
|
necomi |
⊢ 𝑈 ≠ 𝑋 |
| 28 |
10
|
necomi |
⊢ 𝑈 ≠ 𝑌 |
| 29 |
27 28
|
prneli |
⊢ 𝑈 ∉ { 𝑋 , 𝑌 } |
| 30 |
29
|
a1i |
⊢ ( { 𝑋 , 𝑌 } ∈ V → 𝑈 ∉ { 𝑋 , 𝑌 } ) |
| 31 |
1 3 15 16 21 22 24 25 26 30
|
p1evtxdeq |
⊢ ( { 𝑋 , 𝑌 } ∈ V → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
| 32 |
12 31
|
ax-mp |
⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) |
| 33 |
32 5
|
eqtri |
⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = 𝑃 |