| Step |
Hyp |
Ref |
Expression |
| 1 |
|
p1evtxdeq.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
p1evtxdeq.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
p1evtxdeq.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 4 |
|
p1evtxdeq.fv |
⊢ ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 ) |
| 5 |
|
p1evtxdeq.fi |
⊢ ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 𝐾 , 𝐸 〉 } ) ) |
| 6 |
|
p1evtxdeq.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) |
| 7 |
|
p1evtxdeq.d |
⊢ ( 𝜑 → 𝐾 ∉ dom 𝐼 ) |
| 8 |
|
p1evtxdeq.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 9 |
|
p1evtxdeq.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) |
| 10 |
|
p1evtxdeq.n |
⊢ ( 𝜑 → 𝑈 ∉ 𝐸 ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
p1evtxdeqlem |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) ) ) |
| 12 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 13 |
|
snex |
⊢ { 〈 𝐾 , 𝐸 〉 } ∈ V |
| 14 |
12 13
|
pm3.2i |
⊢ ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) |
| 15 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) → ( iEdg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = { 〈 𝐾 , 𝐸 〉 } ) |
| 16 |
14 15
|
mp1i |
⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = { 〈 𝐾 , 𝐸 〉 } ) |
| 17 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) → ( Vtx ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = 𝑉 ) |
| 18 |
14 17
|
mp1i |
⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = 𝑉 ) |
| 19 |
16 18 6 8 9 10
|
1hevtxdg0 |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) = 0 ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 0 ) ) |
| 21 |
1
|
vtxdgelxnn0 |
⊢ ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0* ) |
| 22 |
|
xnn0xr |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0* → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ* ) |
| 23 |
8 21 22
|
3syl |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ* ) |
| 24 |
23
|
xaddridd |
⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 0 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
| 25 |
11 20 24
|
3eqtrd |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |