Metamath Proof Explorer


Theorem vdegp1ai

Description: The induction step for a vertex degree calculation. If the degree of U in the edge set E is P , then adding { X , Y } to the edge set, where X =/= U =/= Y , yields degree P as well. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)

Ref Expression
Hypotheses vdegp1ai.vg V = Vtx G
vdegp1ai.u U V
vdegp1ai.i I = iEdg G
vdegp1ai.w I Word x 𝒫 V | x 2
vdegp1ai.d VtxDeg G U = P
vdegp1ai.vf Vtx F = V
vdegp1ai.x X V
vdegp1ai.xu X U
vdegp1ai.y Y V
vdegp1ai.yu Y U
vdegp1ai.f iEdg F = I ++ ⟨“ X Y ”⟩
Assertion vdegp1ai VtxDeg F U = P

Proof

Step Hyp Ref Expression
1 vdegp1ai.vg V = Vtx G
2 vdegp1ai.u U V
3 vdegp1ai.i I = iEdg G
4 vdegp1ai.w I Word x 𝒫 V | x 2
5 vdegp1ai.d VtxDeg G U = P
6 vdegp1ai.vf Vtx F = V
7 vdegp1ai.x X V
8 vdegp1ai.xu X U
9 vdegp1ai.y Y V
10 vdegp1ai.yu Y U
11 vdegp1ai.f iEdg F = I ++ ⟨“ X Y ”⟩
12 prex X Y V
13 wrdf I Word x 𝒫 V | x 2 I : 0 ..^ I x 𝒫 V | x 2
14 13 ffund I Word x 𝒫 V | x 2 Fun I
15 4 14 mp1i X Y V Fun I
16 6 a1i X Y V Vtx F = V
17 wrdv I Word x 𝒫 V | x 2 I Word V
18 4 17 ax-mp I Word V
19 cats1un I Word V X Y V I ++ ⟨“ X Y ”⟩ = I I X Y
20 18 19 mpan X Y V I ++ ⟨“ X Y ”⟩ = I I X Y
21 11 20 eqtrid X Y V iEdg F = I I X Y
22 fvexd X Y V I V
23 wrdlndm I Word x 𝒫 V | x 2 I dom I
24 4 23 mp1i X Y V I dom I
25 2 a1i X Y V U V
26 id X Y V X Y V
27 8 necomi U X
28 10 necomi U Y
29 27 28 prneli U X Y
30 29 a1i X Y V U X Y
31 1 3 15 16 21 22 24 25 26 30 p1evtxdeq X Y V VtxDeg F U = VtxDeg G U
32 12 31 ax-mp VtxDeg F U = VtxDeg G U
33 32 5 eqtri VtxDeg F U = P