Step |
Hyp |
Ref |
Expression |
1 |
|
vdegp1ai.vg |
β’ π = ( Vtx β πΊ ) |
2 |
|
vdegp1ai.u |
β’ π β π |
3 |
|
vdegp1ai.i |
β’ πΌ = ( iEdg β πΊ ) |
4 |
|
vdegp1ai.w |
β’ πΌ β Word { π₯ β ( π« π β { β
} ) β£ ( β― β π₯ ) β€ 2 } |
5 |
|
vdegp1ai.d |
β’ ( ( VtxDeg β πΊ ) β π ) = π |
6 |
|
vdegp1ai.vf |
β’ ( Vtx β πΉ ) = π |
7 |
|
vdegp1bi.x |
β’ π β π |
8 |
|
vdegp1bi.xu |
β’ π β π |
9 |
|
vdegp1bi.f |
β’ ( iEdg β πΉ ) = ( πΌ ++ β¨β { π , π } ββ© ) |
10 |
|
prex |
β’ { π , π } β V |
11 |
|
wrdf |
β’ ( πΌ β Word { π₯ β ( π« π β { β
} ) β£ ( β― β π₯ ) β€ 2 } β πΌ : ( 0 ..^ ( β― β πΌ ) ) βΆ { π₯ β ( π« π β { β
} ) β£ ( β― β π₯ ) β€ 2 } ) |
12 |
11
|
ffund |
β’ ( πΌ β Word { π₯ β ( π« π β { β
} ) β£ ( β― β π₯ ) β€ 2 } β Fun πΌ ) |
13 |
4 12
|
mp1i |
β’ ( { π , π } β V β Fun πΌ ) |
14 |
6
|
a1i |
β’ ( { π , π } β V β ( Vtx β πΉ ) = π ) |
15 |
|
wrdv |
β’ ( πΌ β Word { π₯ β ( π« π β { β
} ) β£ ( β― β π₯ ) β€ 2 } β πΌ β Word V ) |
16 |
4 15
|
ax-mp |
β’ πΌ β Word V |
17 |
|
cats1un |
β’ ( ( πΌ β Word V β§ { π , π } β V ) β ( πΌ ++ β¨β { π , π } ββ© ) = ( πΌ βͺ { β¨ ( β― β πΌ ) , { π , π } β© } ) ) |
18 |
16 17
|
mpan |
β’ ( { π , π } β V β ( πΌ ++ β¨β { π , π } ββ© ) = ( πΌ βͺ { β¨ ( β― β πΌ ) , { π , π } β© } ) ) |
19 |
9 18
|
eqtrid |
β’ ( { π , π } β V β ( iEdg β πΉ ) = ( πΌ βͺ { β¨ ( β― β πΌ ) , { π , π } β© } ) ) |
20 |
|
fvexd |
β’ ( { π , π } β V β ( β― β πΌ ) β V ) |
21 |
|
wrdlndm |
β’ ( πΌ β Word { π₯ β ( π« π β { β
} ) β£ ( β― β π₯ ) β€ 2 } β ( β― β πΌ ) β dom πΌ ) |
22 |
4 21
|
mp1i |
β’ ( { π , π } β V β ( β― β πΌ ) β dom πΌ ) |
23 |
2
|
a1i |
β’ ( { π , π } β V β π β π ) |
24 |
2 7
|
pm3.2i |
β’ ( π β π β§ π β π ) |
25 |
|
prelpwi |
β’ ( ( π β π β§ π β π ) β { π , π } β π« π ) |
26 |
24 25
|
mp1i |
β’ ( { π , π } β V β { π , π } β π« π ) |
27 |
|
prid1g |
β’ ( π β π β π β { π , π } ) |
28 |
2 27
|
mp1i |
β’ ( { π , π } β V β π β { π , π } ) |
29 |
8
|
necomi |
β’ π β π |
30 |
|
hashprg |
β’ ( ( π β π β§ π β π ) β ( π β π β ( β― β { π , π } ) = 2 ) ) |
31 |
2 7 30
|
mp2an |
β’ ( π β π β ( β― β { π , π } ) = 2 ) |
32 |
29 31
|
mpbi |
β’ ( β― β { π , π } ) = 2 |
33 |
32
|
eqcomi |
β’ 2 = ( β― β { π , π } ) |
34 |
|
2re |
β’ 2 β β |
35 |
34
|
eqlei |
β’ ( 2 = ( β― β { π , π } ) β 2 β€ ( β― β { π , π } ) ) |
36 |
33 35
|
mp1i |
β’ ( { π , π } β V β 2 β€ ( β― β { π , π } ) ) |
37 |
1 3 13 14 19 20 22 23 26 28 36
|
p1evtxdp1 |
β’ ( { π , π } β V β ( ( VtxDeg β πΉ ) β π ) = ( ( ( VtxDeg β πΊ ) β π ) +π 1 ) ) |
38 |
10 37
|
ax-mp |
β’ ( ( VtxDeg β πΉ ) β π ) = ( ( ( VtxDeg β πΊ ) β π ) +π 1 ) |
39 |
|
fzofi |
β’ ( 0 ..^ ( β― β πΌ ) ) β Fin |
40 |
|
wrddm |
β’ ( πΌ β Word { π₯ β ( π« π β { β
} ) β£ ( β― β π₯ ) β€ 2 } β dom πΌ = ( 0 ..^ ( β― β πΌ ) ) ) |
41 |
4 40
|
ax-mp |
β’ dom πΌ = ( 0 ..^ ( β― β πΌ ) ) |
42 |
41
|
eqcomi |
β’ ( 0 ..^ ( β― β πΌ ) ) = dom πΌ |
43 |
1 3 42
|
vtxdgfisnn0 |
β’ ( ( ( 0 ..^ ( β― β πΌ ) ) β Fin β§ π β π ) β ( ( VtxDeg β πΊ ) β π ) β β0 ) |
44 |
39 2 43
|
mp2an |
β’ ( ( VtxDeg β πΊ ) β π ) β β0 |
45 |
44
|
nn0rei |
β’ ( ( VtxDeg β πΊ ) β π ) β β |
46 |
|
1re |
β’ 1 β β |
47 |
|
rexadd |
β’ ( ( ( ( VtxDeg β πΊ ) β π ) β β β§ 1 β β ) β ( ( ( VtxDeg β πΊ ) β π ) +π 1 ) = ( ( ( VtxDeg β πΊ ) β π ) + 1 ) ) |
48 |
45 46 47
|
mp2an |
β’ ( ( ( VtxDeg β πΊ ) β π ) +π 1 ) = ( ( ( VtxDeg β πΊ ) β π ) + 1 ) |
49 |
5
|
oveq1i |
β’ ( ( ( VtxDeg β πΊ ) β π ) + 1 ) = ( π + 1 ) |
50 |
38 48 49
|
3eqtri |
β’ ( ( VtxDeg β πΉ ) β π ) = ( π + 1 ) |