| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdegp1ai.vg |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
vdegp1ai.u |
⊢ 𝑈 ∈ 𝑉 |
| 3 |
|
vdegp1ai.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 4 |
|
vdegp1ai.w |
⊢ 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } |
| 5 |
|
vdegp1ai.d |
⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃 |
| 6 |
|
vdegp1ai.vf |
⊢ ( Vtx ‘ 𝐹 ) = 𝑉 |
| 7 |
|
vdegp1bi.x |
⊢ 𝑋 ∈ 𝑉 |
| 8 |
|
vdegp1bi.xu |
⊢ 𝑋 ≠ 𝑈 |
| 9 |
|
vdegp1bi.f |
⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑈 , 𝑋 } ”〉 ) |
| 10 |
|
prex |
⊢ { 𝑈 , 𝑋 } ∈ V |
| 11 |
|
wrdf |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 12 |
11
|
ffund |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → Fun 𝐼 ) |
| 13 |
4 12
|
mp1i |
⊢ ( { 𝑈 , 𝑋 } ∈ V → Fun 𝐼 ) |
| 14 |
6
|
a1i |
⊢ ( { 𝑈 , 𝑋 } ∈ V → ( Vtx ‘ 𝐹 ) = 𝑉 ) |
| 15 |
|
wrdv |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 ∈ Word V ) |
| 16 |
4 15
|
ax-mp |
⊢ 𝐼 ∈ Word V |
| 17 |
|
cats1un |
⊢ ( ( 𝐼 ∈ Word V ∧ { 𝑈 , 𝑋 } ∈ V ) → ( 𝐼 ++ 〈“ { 𝑈 , 𝑋 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑈 , 𝑋 } 〉 } ) ) |
| 18 |
16 17
|
mpan |
⊢ ( { 𝑈 , 𝑋 } ∈ V → ( 𝐼 ++ 〈“ { 𝑈 , 𝑋 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑈 , 𝑋 } 〉 } ) ) |
| 19 |
9 18
|
eqtrid |
⊢ ( { 𝑈 , 𝑋 } ∈ V → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑈 , 𝑋 } 〉 } ) ) |
| 20 |
|
fvexd |
⊢ ( { 𝑈 , 𝑋 } ∈ V → ( ♯ ‘ 𝐼 ) ∈ V ) |
| 21 |
|
wrdlndm |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) |
| 22 |
4 21
|
mp1i |
⊢ ( { 𝑈 , 𝑋 } ∈ V → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) |
| 23 |
2
|
a1i |
⊢ ( { 𝑈 , 𝑋 } ∈ V → 𝑈 ∈ 𝑉 ) |
| 24 |
2 7
|
pm3.2i |
⊢ ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) |
| 25 |
|
prelpwi |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → { 𝑈 , 𝑋 } ∈ 𝒫 𝑉 ) |
| 26 |
24 25
|
mp1i |
⊢ ( { 𝑈 , 𝑋 } ∈ V → { 𝑈 , 𝑋 } ∈ 𝒫 𝑉 ) |
| 27 |
|
prid1g |
⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ { 𝑈 , 𝑋 } ) |
| 28 |
2 27
|
mp1i |
⊢ ( { 𝑈 , 𝑋 } ∈ V → 𝑈 ∈ { 𝑈 , 𝑋 } ) |
| 29 |
8
|
necomi |
⊢ 𝑈 ≠ 𝑋 |
| 30 |
|
hashprg |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑈 ≠ 𝑋 ↔ ( ♯ ‘ { 𝑈 , 𝑋 } ) = 2 ) ) |
| 31 |
2 7 30
|
mp2an |
⊢ ( 𝑈 ≠ 𝑋 ↔ ( ♯ ‘ { 𝑈 , 𝑋 } ) = 2 ) |
| 32 |
29 31
|
mpbi |
⊢ ( ♯ ‘ { 𝑈 , 𝑋 } ) = 2 |
| 33 |
32
|
eqcomi |
⊢ 2 = ( ♯ ‘ { 𝑈 , 𝑋 } ) |
| 34 |
|
2re |
⊢ 2 ∈ ℝ |
| 35 |
34
|
eqlei |
⊢ ( 2 = ( ♯ ‘ { 𝑈 , 𝑋 } ) → 2 ≤ ( ♯ ‘ { 𝑈 , 𝑋 } ) ) |
| 36 |
33 35
|
mp1i |
⊢ ( { 𝑈 , 𝑋 } ∈ V → 2 ≤ ( ♯ ‘ { 𝑈 , 𝑋 } ) ) |
| 37 |
1 3 13 14 19 20 22 23 26 28 36
|
p1evtxdp1 |
⊢ ( { 𝑈 , 𝑋 } ∈ V → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) ) |
| 38 |
10 37
|
ax-mp |
⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) |
| 39 |
|
fzofi |
⊢ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ∈ Fin |
| 40 |
|
wrddm |
⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → dom 𝐼 = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 41 |
4 40
|
ax-mp |
⊢ dom 𝐼 = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) |
| 42 |
41
|
eqcomi |
⊢ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) = dom 𝐼 |
| 43 |
1 3 42
|
vtxdgfisnn0 |
⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0 ) |
| 44 |
39 2 43
|
mp2an |
⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0 |
| 45 |
44
|
nn0rei |
⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ |
| 46 |
|
1re |
⊢ 1 ∈ ℝ |
| 47 |
|
rexadd |
⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) + 1 ) ) |
| 48 |
45 46 47
|
mp2an |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) + 1 ) |
| 49 |
5
|
oveq1i |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) + 1 ) = ( 𝑃 + 1 ) |
| 50 |
38 48 49
|
3eqtri |
⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( 𝑃 + 1 ) |