Step |
Hyp |
Ref |
Expression |
1 |
|
vdegp1ai.vg |
|- V = ( Vtx ` G ) |
2 |
|
vdegp1ai.u |
|- U e. V |
3 |
|
vdegp1ai.i |
|- I = ( iEdg ` G ) |
4 |
|
vdegp1ai.w |
|- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
5 |
|
vdegp1ai.d |
|- ( ( VtxDeg ` G ) ` U ) = P |
6 |
|
vdegp1ai.vf |
|- ( Vtx ` F ) = V |
7 |
|
vdegp1bi.x |
|- X e. V |
8 |
|
vdegp1bi.xu |
|- X =/= U |
9 |
|
vdegp1bi.f |
|- ( iEdg ` F ) = ( I ++ <" { U , X } "> ) |
10 |
|
prex |
|- { U , X } e. _V |
11 |
|
wrdf |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I : ( 0 ..^ ( # ` I ) ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
12 |
11
|
ffund |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> Fun I ) |
13 |
4 12
|
mp1i |
|- ( { U , X } e. _V -> Fun I ) |
14 |
6
|
a1i |
|- ( { U , X } e. _V -> ( Vtx ` F ) = V ) |
15 |
|
wrdv |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I e. Word _V ) |
16 |
4 15
|
ax-mp |
|- I e. Word _V |
17 |
|
cats1un |
|- ( ( I e. Word _V /\ { U , X } e. _V ) -> ( I ++ <" { U , X } "> ) = ( I u. { <. ( # ` I ) , { U , X } >. } ) ) |
18 |
16 17
|
mpan |
|- ( { U , X } e. _V -> ( I ++ <" { U , X } "> ) = ( I u. { <. ( # ` I ) , { U , X } >. } ) ) |
19 |
9 18
|
eqtrid |
|- ( { U , X } e. _V -> ( iEdg ` F ) = ( I u. { <. ( # ` I ) , { U , X } >. } ) ) |
20 |
|
fvexd |
|- ( { U , X } e. _V -> ( # ` I ) e. _V ) |
21 |
|
wrdlndm |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` I ) e/ dom I ) |
22 |
4 21
|
mp1i |
|- ( { U , X } e. _V -> ( # ` I ) e/ dom I ) |
23 |
2
|
a1i |
|- ( { U , X } e. _V -> U e. V ) |
24 |
2 7
|
pm3.2i |
|- ( U e. V /\ X e. V ) |
25 |
|
prelpwi |
|- ( ( U e. V /\ X e. V ) -> { U , X } e. ~P V ) |
26 |
24 25
|
mp1i |
|- ( { U , X } e. _V -> { U , X } e. ~P V ) |
27 |
|
prid1g |
|- ( U e. V -> U e. { U , X } ) |
28 |
2 27
|
mp1i |
|- ( { U , X } e. _V -> U e. { U , X } ) |
29 |
8
|
necomi |
|- U =/= X |
30 |
|
hashprg |
|- ( ( U e. V /\ X e. V ) -> ( U =/= X <-> ( # ` { U , X } ) = 2 ) ) |
31 |
2 7 30
|
mp2an |
|- ( U =/= X <-> ( # ` { U , X } ) = 2 ) |
32 |
29 31
|
mpbi |
|- ( # ` { U , X } ) = 2 |
33 |
32
|
eqcomi |
|- 2 = ( # ` { U , X } ) |
34 |
|
2re |
|- 2 e. RR |
35 |
34
|
eqlei |
|- ( 2 = ( # ` { U , X } ) -> 2 <_ ( # ` { U , X } ) ) |
36 |
33 35
|
mp1i |
|- ( { U , X } e. _V -> 2 <_ ( # ` { U , X } ) ) |
37 |
1 3 13 14 19 20 22 23 26 28 36
|
p1evtxdp1 |
|- ( { U , X } e. _V -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e 1 ) ) |
38 |
10 37
|
ax-mp |
|- ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e 1 ) |
39 |
|
fzofi |
|- ( 0 ..^ ( # ` I ) ) e. Fin |
40 |
|
wrddm |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> dom I = ( 0 ..^ ( # ` I ) ) ) |
41 |
4 40
|
ax-mp |
|- dom I = ( 0 ..^ ( # ` I ) ) |
42 |
41
|
eqcomi |
|- ( 0 ..^ ( # ` I ) ) = dom I |
43 |
1 3 42
|
vtxdgfisnn0 |
|- ( ( ( 0 ..^ ( # ` I ) ) e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) e. NN0 ) |
44 |
39 2 43
|
mp2an |
|- ( ( VtxDeg ` G ) ` U ) e. NN0 |
45 |
44
|
nn0rei |
|- ( ( VtxDeg ` G ) ` U ) e. RR |
46 |
|
1re |
|- 1 e. RR |
47 |
|
rexadd |
|- ( ( ( ( VtxDeg ` G ) ` U ) e. RR /\ 1 e. RR ) -> ( ( ( VtxDeg ` G ) ` U ) +e 1 ) = ( ( ( VtxDeg ` G ) ` U ) + 1 ) ) |
48 |
45 46 47
|
mp2an |
|- ( ( ( VtxDeg ` G ) ` U ) +e 1 ) = ( ( ( VtxDeg ` G ) ` U ) + 1 ) |
49 |
5
|
oveq1i |
|- ( ( ( VtxDeg ` G ) ` U ) + 1 ) = ( P + 1 ) |
50 |
38 48 49
|
3eqtri |
|- ( ( VtxDeg ` F ) ` U ) = ( P + 1 ) |