Description: Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999) (Revised by Alexander van der Vekens, 20-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lt.1 | |- A e. RR | |
| Assertion | eqlei | |- ( A = B -> A <_ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lt.1 | |- A e. RR | |
| 2 | eleq1a | |- ( A e. RR -> ( B = A -> B e. RR ) ) | |
| 3 | 1 2 | ax-mp | |- ( B = A -> B e. RR ) | 
| 4 | 3 | eqcoms | |- ( A = B -> B e. RR ) | 
| 5 | letri3 | |- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) | |
| 6 | 1 5 | mpan | |- ( B e. RR -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) | 
| 7 | simpl | |- ( ( A <_ B /\ B <_ A ) -> A <_ B ) | |
| 8 | 6 7 | biimtrdi | |- ( B e. RR -> ( A = B -> A <_ B ) ) | 
| 9 | 4 8 | mpcom | |- ( A = B -> A <_ B ) |