Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lt.1 | |- A e. RR |
|
| Assertion | eqlei2 | |- ( B = A -> B <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | |- A e. RR |
|
| 2 | eleq1a | |- ( A e. RR -> ( B = A -> B e. RR ) ) |
|
| 3 | 1 2 | ax-mp | |- ( B = A -> B e. RR ) |
| 4 | eqcom | |- ( B = A <-> A = B ) |
|
| 5 | letri3 | |- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
|
| 6 | 1 5 | mpan | |- ( B e. RR -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 7 | 4 6 | bitrid | |- ( B e. RR -> ( B = A <-> ( A <_ B /\ B <_ A ) ) ) |
| 8 | simpr | |- ( ( A <_ B /\ B <_ A ) -> B <_ A ) |
|
| 9 | 7 8 | biimtrdi | |- ( B e. RR -> ( B = A -> B <_ A ) ) |
| 10 | 3 9 | mpcom | |- ( B = A -> B <_ A ) |