Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of U in the edge set E is P , then adding { X , U } to the edge set, where X =/= U , yields degree P + 1 . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vdegp1ai.vg | |- V = ( Vtx ` G ) |
|
vdegp1ai.u | |- U e. V |
||
vdegp1ai.i | |- I = ( iEdg ` G ) |
||
vdegp1ai.w | |- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
||
vdegp1ai.d | |- ( ( VtxDeg ` G ) ` U ) = P |
||
vdegp1ai.vf | |- ( Vtx ` F ) = V |
||
vdegp1bi.x | |- X e. V |
||
vdegp1bi.xu | |- X =/= U |
||
vdegp1ci.f | |- ( iEdg ` F ) = ( I ++ <" { X , U } "> ) |
||
Assertion | vdegp1ci | |- ( ( VtxDeg ` F ) ` U ) = ( P + 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdegp1ai.vg | |- V = ( Vtx ` G ) |
|
2 | vdegp1ai.u | |- U e. V |
|
3 | vdegp1ai.i | |- I = ( iEdg ` G ) |
|
4 | vdegp1ai.w | |- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
|
5 | vdegp1ai.d | |- ( ( VtxDeg ` G ) ` U ) = P |
|
6 | vdegp1ai.vf | |- ( Vtx ` F ) = V |
|
7 | vdegp1bi.x | |- X e. V |
|
8 | vdegp1bi.xu | |- X =/= U |
|
9 | vdegp1ci.f | |- ( iEdg ` F ) = ( I ++ <" { X , U } "> ) |
|
10 | prcom | |- { X , U } = { U , X } |
|
11 | s1eq | |- ( { X , U } = { U , X } -> <" { X , U } "> = <" { U , X } "> ) |
|
12 | 10 11 | ax-mp | |- <" { X , U } "> = <" { U , X } "> |
13 | 12 | oveq2i | |- ( I ++ <" { X , U } "> ) = ( I ++ <" { U , X } "> ) |
14 | 9 13 | eqtri | |- ( iEdg ` F ) = ( I ++ <" { U , X } "> ) |
15 | 1 2 3 4 5 6 7 8 14 | vdegp1bi | |- ( ( VtxDeg ` F ) ` U ) = ( P + 1 ) |