Metamath Proof Explorer


Theorem vdegp1ci

Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of U in the edge set E is P , then adding { X , U } to the edge set, where X =/= U , yields degree P + 1 . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)

Ref Expression
Hypotheses vdegp1ai.vg
|- V = ( Vtx ` G )
vdegp1ai.u
|- U e. V
vdegp1ai.i
|- I = ( iEdg ` G )
vdegp1ai.w
|- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 }
vdegp1ai.d
|- ( ( VtxDeg ` G ) ` U ) = P
vdegp1ai.vf
|- ( Vtx ` F ) = V
vdegp1bi.x
|- X e. V
vdegp1bi.xu
|- X =/= U
vdegp1ci.f
|- ( iEdg ` F ) = ( I ++ <" { X , U } "> )
Assertion vdegp1ci
|- ( ( VtxDeg ` F ) ` U ) = ( P + 1 )

Proof

Step Hyp Ref Expression
1 vdegp1ai.vg
 |-  V = ( Vtx ` G )
2 vdegp1ai.u
 |-  U e. V
3 vdegp1ai.i
 |-  I = ( iEdg ` G )
4 vdegp1ai.w
 |-  I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 }
5 vdegp1ai.d
 |-  ( ( VtxDeg ` G ) ` U ) = P
6 vdegp1ai.vf
 |-  ( Vtx ` F ) = V
7 vdegp1bi.x
 |-  X e. V
8 vdegp1bi.xu
 |-  X =/= U
9 vdegp1ci.f
 |-  ( iEdg ` F ) = ( I ++ <" { X , U } "> )
10 prcom
 |-  { X , U } = { U , X }
11 s1eq
 |-  ( { X , U } = { U , X } -> <" { X , U } "> = <" { U , X } "> )
12 10 11 ax-mp
 |-  <" { X , U } "> = <" { U , X } ">
13 12 oveq2i
 |-  ( I ++ <" { X , U } "> ) = ( I ++ <" { U , X } "> )
14 9 13 eqtri
 |-  ( iEdg ` F ) = ( I ++ <" { U , X } "> )
15 1 2 3 4 5 6 7 8 14 vdegp1bi
 |-  ( ( VtxDeg ` F ) ` U ) = ( P + 1 )