Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of U in the edge set E is P , then adding { X , U } to the edge set, where X =/= U , yields degree P + 1 . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vdegp1ai.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 | ||
| vdegp1ai.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vdegp1ai.w | ⊢ 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } | ||
| vdegp1ai.d | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃 | ||
| vdegp1ai.vf | ⊢ ( Vtx ‘ 𝐹 ) = 𝑉 | ||
| vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 | ||
| vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 | ||
| vdegp1ci.f | ⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑋 , 𝑈 } ”〉 ) | ||
| Assertion | vdegp1ci | ⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( 𝑃 + 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdegp1ai.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 | |
| 3 | vdegp1ai.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 4 | vdegp1ai.w | ⊢ 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } | |
| 5 | vdegp1ai.d | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃 | |
| 6 | vdegp1ai.vf | ⊢ ( Vtx ‘ 𝐹 ) = 𝑉 | |
| 7 | vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 | |
| 8 | vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 | |
| 9 | vdegp1ci.f | ⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑋 , 𝑈 } ”〉 ) | |
| 10 | prcom | ⊢ { 𝑋 , 𝑈 } = { 𝑈 , 𝑋 } | |
| 11 | s1eq | ⊢ ( { 𝑋 , 𝑈 } = { 𝑈 , 𝑋 } → 〈“ { 𝑋 , 𝑈 } ”〉 = 〈“ { 𝑈 , 𝑋 } ”〉 ) | |
| 12 | 10 11 | ax-mp | ⊢ 〈“ { 𝑋 , 𝑈 } ”〉 = 〈“ { 𝑈 , 𝑋 } ”〉 |
| 13 | 12 | oveq2i | ⊢ ( 𝐼 ++ 〈“ { 𝑋 , 𝑈 } ”〉 ) = ( 𝐼 ++ 〈“ { 𝑈 , 𝑋 } ”〉 ) |
| 14 | 9 13 | eqtri | ⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑈 , 𝑋 } ”〉 ) |
| 15 | 1 2 3 4 5 6 7 8 14 | vdegp1bi | ⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( 𝑃 + 1 ) |