Metamath Proof Explorer


Theorem vdegp1ci

Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of U in the edge set E is P , then adding { X , U } to the edge set, where X =/= U , yields degree P + 1 . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)

Ref Expression
Hypotheses vdegp1ai.vg 𝑉 = ( Vtx ‘ 𝐺 )
vdegp1ai.u 𝑈𝑉
vdegp1ai.i 𝐼 = ( iEdg ‘ 𝐺 )
vdegp1ai.w 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
vdegp1ai.d ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃
vdegp1ai.vf ( Vtx ‘ 𝐹 ) = 𝑉
vdegp1bi.x 𝑋𝑉
vdegp1bi.xu 𝑋𝑈
vdegp1ci.f ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ ⟨“ { 𝑋 , 𝑈 } ”⟩ )
Assertion vdegp1ci ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( 𝑃 + 1 )

Proof

Step Hyp Ref Expression
1 vdegp1ai.vg 𝑉 = ( Vtx ‘ 𝐺 )
2 vdegp1ai.u 𝑈𝑉
3 vdegp1ai.i 𝐼 = ( iEdg ‘ 𝐺 )
4 vdegp1ai.w 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
5 vdegp1ai.d ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃
6 vdegp1ai.vf ( Vtx ‘ 𝐹 ) = 𝑉
7 vdegp1bi.x 𝑋𝑉
8 vdegp1bi.xu 𝑋𝑈
9 vdegp1ci.f ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ ⟨“ { 𝑋 , 𝑈 } ”⟩ )
10 prcom { 𝑋 , 𝑈 } = { 𝑈 , 𝑋 }
11 s1eq ( { 𝑋 , 𝑈 } = { 𝑈 , 𝑋 } → ⟨“ { 𝑋 , 𝑈 } ”⟩ = ⟨“ { 𝑈 , 𝑋 } ”⟩ )
12 10 11 ax-mp ⟨“ { 𝑋 , 𝑈 } ”⟩ = ⟨“ { 𝑈 , 𝑋 } ”⟩
13 12 oveq2i ( 𝐼 ++ ⟨“ { 𝑋 , 𝑈 } ”⟩ ) = ( 𝐼 ++ ⟨“ { 𝑈 , 𝑋 } ”⟩ )
14 9 13 eqtri ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ ⟨“ { 𝑈 , 𝑋 } ”⟩ )
15 1 2 3 4 5 6 7 8 14 vdegp1bi ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( 𝑃 + 1 )