Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s1eq | |- ( A = B -> <" A "> = <" B "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( A = B -> ( _I ` A ) = ( _I ` B ) ) |
|
| 2 | 1 | opeq2d | |- ( A = B -> <. 0 , ( _I ` A ) >. = <. 0 , ( _I ` B ) >. ) |
| 3 | 2 | sneqd | |- ( A = B -> { <. 0 , ( _I ` A ) >. } = { <. 0 , ( _I ` B ) >. } ) |
| 4 | df-s1 | |- <" A "> = { <. 0 , ( _I ` A ) >. } |
|
| 5 | df-s1 | |- <" B "> = { <. 0 , ( _I ` B ) >. } |
|
| 6 | 3 4 5 | 3eqtr4g | |- ( A = B -> <" A "> = <" B "> ) |