Metamath Proof Explorer


Theorem vtxdginducedm1lem1

Description: Lemma 1 for vtxdginducedm1 : the edge function in the induced subgraph S of a pseudograph G obtained by removing one vertex N . (Contributed by AV, 16-Dec-2021)

Ref Expression
Hypotheses vtxdginducedm1.v
|- V = ( Vtx ` G )
vtxdginducedm1.e
|- E = ( iEdg ` G )
vtxdginducedm1.k
|- K = ( V \ { N } )
vtxdginducedm1.i
|- I = { i e. dom E | N e/ ( E ` i ) }
vtxdginducedm1.p
|- P = ( E |` I )
vtxdginducedm1.s
|- S = <. K , P >.
Assertion vtxdginducedm1lem1
|- ( iEdg ` S ) = P

Proof

Step Hyp Ref Expression
1 vtxdginducedm1.v
 |-  V = ( Vtx ` G )
2 vtxdginducedm1.e
 |-  E = ( iEdg ` G )
3 vtxdginducedm1.k
 |-  K = ( V \ { N } )
4 vtxdginducedm1.i
 |-  I = { i e. dom E | N e/ ( E ` i ) }
5 vtxdginducedm1.p
 |-  P = ( E |` I )
6 vtxdginducedm1.s
 |-  S = <. K , P >.
7 6 fveq2i
 |-  ( iEdg ` S ) = ( iEdg ` <. K , P >. )
8 1 fvexi
 |-  V e. _V
9 8 difexi
 |-  ( V \ { N } ) e. _V
10 3 9 eqeltri
 |-  K e. _V
11 2 fvexi
 |-  E e. _V
12 11 resex
 |-  ( E |` I ) e. _V
13 5 12 eqeltri
 |-  P e. _V
14 10 13 opiedgfvi
 |-  ( iEdg ` <. K , P >. ) = P
15 7 14 eqtri
 |-  ( iEdg ` S ) = P