Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) |
2 |
|
elsni |
⊢ ( 𝐵 ∈ { 𝐴 } → 𝐵 = 𝐴 ) |
3 |
2
|
eqcomd |
⊢ ( 𝐵 ∈ { 𝐴 } → 𝐴 = 𝐵 ) |
4 |
3
|
necon3ai |
⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ { 𝐴 } ) |
5 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
6 |
|
hashunsng |
⊢ ( 𝐵 ∈ 𝑊 → ( ( { 𝐴 } ∈ Fin ∧ ¬ 𝐵 ∈ { 𝐴 } ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( ♯ ‘ { 𝐴 } ) + 1 ) ) ) |
7 |
6
|
imp |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ( { 𝐴 } ∈ Fin ∧ ¬ 𝐵 ∈ { 𝐴 } ) ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( ♯ ‘ { 𝐴 } ) + 1 ) ) |
8 |
5 7
|
mpanr1 |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ { 𝐴 } ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( ♯ ‘ { 𝐴 } ) + 1 ) ) |
9 |
1 4 8
|
syl2an |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( ♯ ‘ { 𝐴 } ) + 1 ) ) |
10 |
|
hashsng |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ { 𝐴 } ) = 1 ) |
11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 } ) = 1 ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 } ) = 1 ) |
13 |
12
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ♯ ‘ { 𝐴 } ) + 1 ) = ( 1 + 1 ) ) |
14 |
9 13
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( 1 + 1 ) ) |
15 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
16 |
15
|
fveq2i |
⊢ ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) |
17 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
18 |
14 16 17
|
3eqtr4g |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
19 |
|
1ne2 |
⊢ 1 ≠ 2 |
20 |
19
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 1 ≠ 2 ) |
21 |
11 20
|
eqnetrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 } ) ≠ 2 ) |
22 |
|
dfsn2 |
⊢ { 𝐴 } = { 𝐴 , 𝐴 } |
23 |
|
preq2 |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } ) |
24 |
22 23
|
eqtr2id |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 } ) |
25 |
24
|
fveq2d |
⊢ ( 𝐴 = 𝐵 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ { 𝐴 } ) ) |
26 |
25
|
neeq1d |
⊢ ( 𝐴 = 𝐵 → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 2 ↔ ( ♯ ‘ { 𝐴 } ) ≠ 2 ) ) |
27 |
21 26
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 = 𝐵 → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 2 ) ) |
28 |
27
|
necon2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 → 𝐴 ≠ 𝐵 ) ) |
29 |
28
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) → 𝐴 ≠ 𝐵 ) |
30 |
18 29
|
impbida |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |