Step |
Hyp |
Ref |
Expression |
1 |
|
eupth2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eupth2.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
eupth2.g |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
4 |
|
eupth2.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
5 |
|
eupth2.p |
⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) |
6 |
|
eqid |
⊢ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 |
7 |
1 2 3 4 5 6
|
eupthvdres |
⊢ ( 𝜑 → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = ( VtxDeg ‘ 𝐺 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) |
9 |
8
|
breq2d |
⊢ ( 𝜑 → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
10 |
9
|
notbid |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) |
12 |
|
eupthiswlk |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
13 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
14 |
5 12 13
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
15 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
16 |
15
|
leidd |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) ) |
17 |
|
breq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) ↔ 0 ≤ ( ♯ ‘ 𝐹 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑚 = 0 → ( 0 ..^ 𝑚 ) = ( 0 ..^ 0 ) ) |
19 |
18
|
imaeq2d |
⊢ ( 𝑚 = 0 → ( 𝐹 “ ( 0 ..^ 𝑚 ) ) = ( 𝐹 “ ( 0 ..^ 0 ) ) ) |
20 |
19
|
reseq2d |
⊢ ( 𝑚 = 0 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ) |
21 |
20
|
opeq2d |
⊢ ( 𝑚 = 0 → 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) |
22 |
21
|
fveq2d |
⊢ ( 𝑚 = 0 → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) = ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ) |
23 |
22
|
fveq1d |
⊢ ( 𝑚 = 0 → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) |
24 |
23
|
breq2d |
⊢ ( 𝑚 = 0 → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
25 |
24
|
notbid |
⊢ ( 𝑚 = 0 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
26 |
25
|
rabbidv |
⊢ ( 𝑚 = 0 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } ) |
27 |
|
fveq2 |
⊢ ( 𝑚 = 0 → ( 𝑃 ‘ 𝑚 ) = ( 𝑃 ‘ 0 ) ) |
28 |
27
|
eqeq2d |
⊢ ( 𝑚 = 0 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) ) |
29 |
27
|
preq2d |
⊢ ( 𝑚 = 0 → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) |
30 |
28 29
|
ifbieq2d |
⊢ ( 𝑚 = 0 → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) |
31 |
26 30
|
eqeq12d |
⊢ ( 𝑚 = 0 → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ↔ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) ) |
32 |
17 31
|
imbi12d |
⊢ ( 𝑚 = 0 → ( ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ↔ ( 0 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) ) ) |
33 |
32
|
imbi2d |
⊢ ( 𝑚 = 0 → ( ( 𝜑 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ) ↔ ( 𝜑 → ( 0 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) ) ) ) |
34 |
|
breq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) ↔ 𝑛 ≤ ( ♯ ‘ 𝐹 ) ) ) |
35 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 0 ..^ 𝑚 ) = ( 0 ..^ 𝑛 ) ) |
36 |
35
|
imaeq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 “ ( 0 ..^ 𝑚 ) ) = ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) |
37 |
36
|
reseq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) ) |
38 |
37
|
opeq2d |
⊢ ( 𝑚 = 𝑛 → 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) |
39 |
38
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) = ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ) |
40 |
39
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) ) |
41 |
40
|
breq2d |
⊢ ( 𝑚 = 𝑛 → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
42 |
41
|
notbid |
⊢ ( 𝑚 = 𝑛 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
43 |
42
|
rabbidv |
⊢ ( 𝑚 = 𝑛 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } ) |
44 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑃 ‘ 𝑚 ) = ( 𝑃 ‘ 𝑛 ) ) |
45 |
44
|
eqeq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) ) ) |
46 |
44
|
preq2d |
⊢ ( 𝑚 = 𝑛 → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) |
47 |
45 46
|
ifbieq2d |
⊢ ( 𝑚 = 𝑛 → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) |
48 |
43 47
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ↔ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) |
49 |
34 48
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ↔ ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ) |
50 |
49
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ) ↔ ( 𝜑 → ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ) ) |
51 |
|
breq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) ↔ ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
52 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 0 ..^ 𝑚 ) = ( 0 ..^ ( 𝑛 + 1 ) ) ) |
53 |
52
|
imaeq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐹 “ ( 0 ..^ 𝑚 ) ) = ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) |
54 |
53
|
reseq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) ) |
55 |
54
|
opeq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) |
56 |
55
|
fveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) = ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ) |
57 |
56
|
fveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) ) |
58 |
57
|
breq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
59 |
58
|
notbid |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
60 |
59
|
rabbidv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } ) |
61 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑃 ‘ 𝑚 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
62 |
61
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) |
63 |
61
|
preq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) |
64 |
62 63
|
ifbieq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) |
65 |
60 64
|
eqeq12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ↔ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) |
66 |
51 65
|
imbi12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ↔ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |
67 |
66
|
imbi2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) ) |
68 |
|
breq1 |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) ↔ ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
69 |
|
oveq2 |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 0 ..^ 𝑚 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
70 |
69
|
imaeq2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 𝐹 “ ( 0 ..^ 𝑚 ) ) = ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
71 |
70
|
reseq2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
72 |
71
|
opeq2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) |
73 |
72
|
fveq2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) = ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ) |
74 |
73
|
fveq1d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ) |
75 |
74
|
breq2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
76 |
75
|
notbid |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
77 |
76
|
rabbidv |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } ) |
78 |
|
fveq2 |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 𝑃 ‘ 𝑚 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
79 |
78
|
eqeq2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
80 |
78
|
preq2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) |
81 |
79 80
|
ifbieq2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
82 |
77 81
|
eqeq12d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ↔ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) |
83 |
68 82
|
imbi12d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ↔ ( ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) ) |
84 |
83
|
imbi2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ( 𝜑 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ) ↔ ( 𝜑 → ( ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) ) ) |
85 |
1 2 3 4 5
|
eupth2lemb |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = ∅ ) |
86 |
|
eqid |
⊢ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) |
87 |
86
|
iftruei |
⊢ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) = ∅ |
88 |
85 87
|
eqtr4di |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) |
89 |
88
|
a1d |
⊢ ( 𝜑 → ( 0 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) ) |
90 |
1 2 3 4 5
|
eupth2lems |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |
91 |
90
|
expcom |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝜑 → ( ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) ) |
92 |
91
|
a2d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝜑 → ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) ) |
93 |
33 50 67 84 89 92
|
nn0ind |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝜑 → ( ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) ) |
94 |
16 93
|
mpid |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) |
95 |
14 94
|
mpcom |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
96 |
11 95
|
eqtr3d |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |