| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupthvdres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
eupthvdres.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
eupthvdres.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
| 4 |
|
eupthvdres.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 5 |
|
eupthvdres.p |
⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) |
| 6 |
|
eupthvdres.h |
⊢ 𝐻 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 |
| 7 |
|
opex |
⊢ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ∈ V |
| 8 |
6 7
|
eqeltri |
⊢ 𝐻 ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 10 |
6
|
fveq2i |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) |
| 11 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 12 |
2
|
fvexi |
⊢ 𝐼 ∈ V |
| 13 |
12
|
resex |
⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V |
| 14 |
11 13
|
pm3.2i |
⊢ ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) ) |
| 16 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = 𝑉 ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = 𝑉 ) |
| 18 |
10 17
|
eqtrid |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
| 19 |
18 1
|
eqtrdi |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐺 ) ) |
| 20 |
6
|
fveq2i |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) |
| 21 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 22 |
15 21
|
syl |
⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 23 |
20 22
|
eqtrid |
⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 24 |
2
|
eupthf1o |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 ) |
| 25 |
|
f1ofo |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom 𝐼 ) |
| 26 |
|
foima |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom 𝐼 → ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = dom 𝐼 ) |
| 27 |
5 24 25 26
|
4syl |
⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = dom 𝐼 ) |
| 28 |
27
|
reseq2d |
⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( 𝐼 ↾ dom 𝐼 ) ) |
| 29 |
4
|
funfnd |
⊢ ( 𝜑 → 𝐼 Fn dom 𝐼 ) |
| 30 |
|
fnresdm |
⊢ ( 𝐼 Fn dom 𝐼 → ( 𝐼 ↾ dom 𝐼 ) = 𝐼 ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → ( 𝐼 ↾ dom 𝐼 ) = 𝐼 ) |
| 32 |
23 28 31
|
3eqtrd |
⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = 𝐼 ) |
| 33 |
32 2
|
eqtrdi |
⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) ) |
| 34 |
3 9 19 33
|
vtxdeqd |
⊢ ( 𝜑 → ( VtxDeg ‘ 𝐻 ) = ( VtxDeg ‘ 𝐺 ) ) |