| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupthvdres.v |
|- V = ( Vtx ` G ) |
| 2 |
|
eupthvdres.i |
|- I = ( iEdg ` G ) |
| 3 |
|
eupthvdres.g |
|- ( ph -> G e. W ) |
| 4 |
|
eupthvdres.f |
|- ( ph -> Fun I ) |
| 5 |
|
eupthvdres.p |
|- ( ph -> F ( EulerPaths ` G ) P ) |
| 6 |
|
eupthvdres.h |
|- H = <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. |
| 7 |
|
opex |
|- <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. e. _V |
| 8 |
6 7
|
eqeltri |
|- H e. _V |
| 9 |
8
|
a1i |
|- ( ph -> H e. _V ) |
| 10 |
6
|
fveq2i |
|- ( Vtx ` H ) = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) |
| 11 |
1
|
fvexi |
|- V e. _V |
| 12 |
2
|
fvexi |
|- I e. _V |
| 13 |
12
|
resex |
|- ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V |
| 14 |
11 13
|
pm3.2i |
|- ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) |
| 15 |
14
|
a1i |
|- ( ph -> ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) ) |
| 16 |
|
opvtxfv |
|- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = V ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = V ) |
| 18 |
10 17
|
eqtrid |
|- ( ph -> ( Vtx ` H ) = V ) |
| 19 |
18 1
|
eqtrdi |
|- ( ph -> ( Vtx ` H ) = ( Vtx ` G ) ) |
| 20 |
6
|
fveq2i |
|- ( iEdg ` H ) = ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) |
| 21 |
|
opiedgfv |
|- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) ) |
| 22 |
15 21
|
syl |
|- ( ph -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) ) |
| 23 |
20 22
|
eqtrid |
|- ( ph -> ( iEdg ` H ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) ) |
| 24 |
2
|
eupthf1o |
|- ( F ( EulerPaths ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) |
| 25 |
|
f1ofo |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I -> F : ( 0 ..^ ( # ` F ) ) -onto-> dom I ) |
| 26 |
|
foima |
|- ( F : ( 0 ..^ ( # ` F ) ) -onto-> dom I -> ( F " ( 0 ..^ ( # ` F ) ) ) = dom I ) |
| 27 |
5 24 25 26
|
4syl |
|- ( ph -> ( F " ( 0 ..^ ( # ` F ) ) ) = dom I ) |
| 28 |
27
|
reseq2d |
|- ( ph -> ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) = ( I |` dom I ) ) |
| 29 |
4
|
funfnd |
|- ( ph -> I Fn dom I ) |
| 30 |
|
fnresdm |
|- ( I Fn dom I -> ( I |` dom I ) = I ) |
| 31 |
29 30
|
syl |
|- ( ph -> ( I |` dom I ) = I ) |
| 32 |
23 28 31
|
3eqtrd |
|- ( ph -> ( iEdg ` H ) = I ) |
| 33 |
32 2
|
eqtrdi |
|- ( ph -> ( iEdg ` H ) = ( iEdg ` G ) ) |
| 34 |
3 9 19 33
|
vtxdeqd |
|- ( ph -> ( VtxDeg ` H ) = ( VtxDeg ` G ) ) |