Metamath Proof Explorer


Theorem eupthvdres

Description: Formerly part of proof of eupth2 : The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)

Ref Expression
Hypotheses eupthvdres.v
|- V = ( Vtx ` G )
eupthvdres.i
|- I = ( iEdg ` G )
eupthvdres.g
|- ( ph -> G e. W )
eupthvdres.f
|- ( ph -> Fun I )
eupthvdres.p
|- ( ph -> F ( EulerPaths ` G ) P )
eupthvdres.h
|- H = <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >.
Assertion eupthvdres
|- ( ph -> ( VtxDeg ` H ) = ( VtxDeg ` G ) )

Proof

Step Hyp Ref Expression
1 eupthvdres.v
 |-  V = ( Vtx ` G )
2 eupthvdres.i
 |-  I = ( iEdg ` G )
3 eupthvdres.g
 |-  ( ph -> G e. W )
4 eupthvdres.f
 |-  ( ph -> Fun I )
5 eupthvdres.p
 |-  ( ph -> F ( EulerPaths ` G ) P )
6 eupthvdres.h
 |-  H = <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >.
7 opex
 |-  <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. e. _V
8 6 7 eqeltri
 |-  H e. _V
9 8 a1i
 |-  ( ph -> H e. _V )
10 6 fveq2i
 |-  ( Vtx ` H ) = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. )
11 1 fvexi
 |-  V e. _V
12 2 fvexi
 |-  I e. _V
13 12 resex
 |-  ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V
14 11 13 pm3.2i
 |-  ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V )
15 14 a1i
 |-  ( ph -> ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) )
16 opvtxfv
 |-  ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = V )
17 15 16 syl
 |-  ( ph -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = V )
18 10 17 syl5eq
 |-  ( ph -> ( Vtx ` H ) = V )
19 18 1 eqtrdi
 |-  ( ph -> ( Vtx ` H ) = ( Vtx ` G ) )
20 6 fveq2i
 |-  ( iEdg ` H ) = ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. )
21 opiedgfv
 |-  ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) )
22 15 21 syl
 |-  ( ph -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) )
23 20 22 syl5eq
 |-  ( ph -> ( iEdg ` H ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) )
24 2 eupthf1o
 |-  ( F ( EulerPaths ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I )
25 5 24 syl
 |-  ( ph -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I )
26 f1ofo
 |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I -> F : ( 0 ..^ ( # ` F ) ) -onto-> dom I )
27 foima
 |-  ( F : ( 0 ..^ ( # ` F ) ) -onto-> dom I -> ( F " ( 0 ..^ ( # ` F ) ) ) = dom I )
28 25 26 27 3syl
 |-  ( ph -> ( F " ( 0 ..^ ( # ` F ) ) ) = dom I )
29 28 reseq2d
 |-  ( ph -> ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) = ( I |` dom I ) )
30 4 funfnd
 |-  ( ph -> I Fn dom I )
31 fnresdm
 |-  ( I Fn dom I -> ( I |` dom I ) = I )
32 30 31 syl
 |-  ( ph -> ( I |` dom I ) = I )
33 23 29 32 3eqtrd
 |-  ( ph -> ( iEdg ` H ) = I )
34 33 2 eqtrdi
 |-  ( ph -> ( iEdg ` H ) = ( iEdg ` G ) )
35 3 9 19 34 vtxdeqd
 |-  ( ph -> ( VtxDeg ` H ) = ( VtxDeg ` G ) )