| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupth2.v |
|
| 2 |
|
eupth2.i |
|
| 3 |
|
eupth2.g |
|
| 4 |
|
eupth2.f |
|
| 5 |
|
eupth2.p |
|
| 6 |
|
nn0re |
|
| 7 |
6
|
adantl |
|
| 8 |
7
|
lep1d |
|
| 9 |
|
peano2re |
|
| 10 |
7 9
|
syl |
|
| 11 |
|
eupthiswlk |
|
| 12 |
|
wlkcl |
|
| 13 |
5 11 12
|
3syl |
|
| 14 |
13
|
nn0red |
|
| 15 |
14
|
adantr |
|
| 16 |
|
letr |
|
| 17 |
7 10 15 16
|
syl3anc |
|
| 18 |
8 17
|
mpand |
|
| 19 |
18
|
imim1d |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
breq2d |
|
| 22 |
21
|
notbid |
|
| 23 |
22
|
elrab |
|
| 24 |
3
|
ad3antrrr |
|
| 25 |
4
|
ad3antrrr |
|
| 26 |
5
|
ad3antrrr |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
|
simpr |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
|
simprl |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
|
simplrr |
|
| 35 |
1 2 24 25 26 27 28 30 32 33 34
|
eupth2lem3 |
|
| 36 |
35
|
pm5.32da |
|
| 37 |
|
0elpw |
|
| 38 |
1
|
wlkepvtx |
|
| 39 |
38
|
simpld |
|
| 40 |
5 11 39
|
3syl |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
1
|
wlkp |
|
| 43 |
5 11 42
|
3syl |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
|
peano2nn0 |
|
| 46 |
45
|
adantl |
|
| 47 |
46
|
adantr |
|
| 48 |
|
nn0uz |
|
| 49 |
47 48
|
eleqtrdi |
|
| 50 |
13
|
ad2antrr |
|
| 51 |
50
|
nn0zd |
|
| 52 |
|
elfz5 |
|
| 53 |
49 51 52
|
syl2anc |
|
| 54 |
31 53
|
mpbird |
|
| 55 |
44 54
|
ffvelcdmd |
|
| 56 |
41 55
|
prssd |
|
| 57 |
|
prex |
|
| 58 |
57
|
elpw |
|
| 59 |
56 58
|
sylibr |
|
| 60 |
|
ifcl |
|
| 61 |
37 59 60
|
sylancr |
|
| 62 |
61
|
elpwid |
|
| 63 |
62
|
sseld |
|
| 64 |
63
|
pm4.71rd |
|
| 65 |
36 64
|
bitr4d |
|
| 66 |
23 65
|
bitrid |
|
| 67 |
66
|
eqrdv |
|
| 68 |
67
|
exp32 |
|
| 69 |
68
|
a2d |
|
| 70 |
19 69
|
syld |
|