Metamath Proof Explorer


Theorem wlkepvtx

Description: The endpoints of a walk are vertices. (Contributed by AV, 31-Jan-2021)

Ref Expression
Hypothesis wlkpvtx.v V=VtxG
Assertion wlkepvtx FWalksGPP0VPFV

Proof

Step Hyp Ref Expression
1 wlkpvtx.v V=VtxG
2 1 wlkp FWalksGPP:0FV
3 wlkcl FWalksGPF0
4 0elfz F000F
5 ffvelcdm P:0FV00FP0V
6 4 5 sylan2 P:0FVF0P0V
7 nn0fz0 F0F0F
8 ffvelcdm P:0FVF0FPFV
9 7 8 sylan2b P:0FVF0PFV
10 6 9 jca P:0FVF0P0VPFV
11 2 3 10 syl2anc FWalksGPP0VPFV