Metamath Proof Explorer


Theorem eupth2lem3

Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)

Ref Expression
Hypotheses eupth2.v V = Vtx G
eupth2.i I = iEdg G
eupth2.g φ G UPGraph
eupth2.f φ Fun I
eupth2.p φ F EulerPaths G P
eupth2.h H = V I F 0 ..^ N
eupth2.x X = V I F 0 ..^ N + 1
eupth2.n φ N 0
eupth2.l φ N + 1 F
eupth2.u φ U V
eupth2.o φ x V | ¬ 2 VtxDeg H x = if P 0 = P N P 0 P N
Assertion eupth2lem3 φ ¬ 2 VtxDeg X U U if P 0 = P N + 1 P 0 P N + 1

Proof

Step Hyp Ref Expression
1 eupth2.v V = Vtx G
2 eupth2.i I = iEdg G
3 eupth2.g φ G UPGraph
4 eupth2.f φ Fun I
5 eupth2.p φ F EulerPaths G P
6 eupth2.h H = V I F 0 ..^ N
7 eupth2.x X = V I F 0 ..^ N + 1
8 eupth2.n φ N 0
9 eupth2.l φ N + 1 F
10 eupth2.u φ U V
11 eupth2.o φ x V | ¬ 2 VtxDeg H x = if P 0 = P N P 0 P N
12 eupthiswlk F EulerPaths G P F Walks G P
13 wlkcl F Walks G P F 0
14 5 12 13 3syl φ F 0
15 nn0p1elfzo N 0 F 0 N + 1 F N 0 ..^ F
16 8 14 9 15 syl3anc φ N 0 ..^ F
17 eupthistrl F EulerPaths G P F Trails G P
18 5 17 syl φ F Trails G P
19 6 fveq2i Vtx H = Vtx V I F 0 ..^ N
20 1 fvexi V V
21 2 fvexi I V
22 21 resex I F 0 ..^ N V
23 20 22 opvtxfvi Vtx V I F 0 ..^ N = V
24 19 23 eqtri Vtx H = V
25 24 a1i φ Vtx H = V
26 snex F N I F N V
27 20 26 opvtxfvi Vtx V F N I F N = V
28 27 a1i φ Vtx V F N I F N = V
29 7 fveq2i Vtx X = Vtx V I F 0 ..^ N + 1
30 21 resex I F 0 ..^ N + 1 V
31 20 30 opvtxfvi Vtx V I F 0 ..^ N + 1 = V
32 29 31 eqtri Vtx X = V
33 32 a1i φ Vtx X = V
34 6 fveq2i iEdg H = iEdg V I F 0 ..^ N
35 20 22 opiedgfvi iEdg V I F 0 ..^ N = I F 0 ..^ N
36 34 35 eqtri iEdg H = I F 0 ..^ N
37 36 a1i φ iEdg H = I F 0 ..^ N
38 20 26 opiedgfvi iEdg V F N I F N = F N I F N
39 38 a1i φ iEdg V F N I F N = F N I F N
40 7 fveq2i iEdg X = iEdg V I F 0 ..^ N + 1
41 20 30 opiedgfvi iEdg V I F 0 ..^ N + 1 = I F 0 ..^ N + 1
42 40 41 eqtri iEdg X = I F 0 ..^ N + 1
43 8 nn0zd φ N
44 fzval3 N 0 N = 0 ..^ N + 1
45 44 eqcomd N 0 ..^ N + 1 = 0 N
46 43 45 syl φ 0 ..^ N + 1 = 0 N
47 46 imaeq2d φ F 0 ..^ N + 1 = F 0 N
48 47 reseq2d φ I F 0 ..^ N + 1 = I F 0 N
49 42 48 syl5eq φ iEdg X = I F 0 N
50 2fveq3 k = N I F k = I F N
51 fveq2 k = N P k = P N
52 fvoveq1 k = N P k + 1 = P N + 1
53 51 52 preq12d k = N P k P k + 1 = P N P N + 1
54 50 53 eqeq12d k = N I F k = P k P k + 1 I F N = P N P N + 1
55 5 12 syl φ F Walks G P
56 2 upgrwlkedg G UPGraph F Walks G P k 0 ..^ F I F k = P k P k + 1
57 3 55 56 syl2anc φ k 0 ..^ F I F k = P k P k + 1
58 54 57 16 rspcdva φ I F N = P N P N + 1
59 1 2 4 16 10 18 25 28 33 37 39 49 11 58 eupth2lem3lem7 φ ¬ 2 VtxDeg X U U if P 0 = P N + 1 P 0 P N + 1