Metamath Proof Explorer


Theorem fzval3

Description: Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzval3 N M N = M ..^ N + 1

Proof

Step Hyp Ref Expression
1 peano2z N N + 1
2 fzoval N + 1 M ..^ N + 1 = M N + 1 - 1
3 1 2 syl N M ..^ N + 1 = M N + 1 - 1
4 zcn N N
5 ax-1cn 1
6 pncan N 1 N + 1 - 1 = N
7 4 5 6 sylancl N N + 1 - 1 = N
8 7 oveq2d N M N + 1 - 1 = M N
9 3 8 eqtr2d N M N = M ..^ N + 1