Metamath Proof Explorer


Theorem upgrwlkedg

Description: The edges of a walk in a pseudograph join exactly the two corresponding adjacent vertices in the walk. (Contributed by AV, 27-Feb-2021)

Ref Expression
Hypothesis upgrwlkedg.i I=iEdgG
Assertion upgrwlkedg GUPGraphFWalksGPk0..^FIFk=PkPk+1

Proof

Step Hyp Ref Expression
1 upgrwlkedg.i I=iEdgG
2 eqid VtxG=VtxG
3 2 1 upgriswlk GUPGraphFWalksGPFWorddomIP:0FVtxGk0..^FIFk=PkPk+1
4 simp3 FWorddomIP:0FVtxGk0..^FIFk=PkPk+1k0..^FIFk=PkPk+1
5 3 4 syl6bi GUPGraphFWalksGPk0..^FIFk=PkPk+1
6 5 imp GUPGraphFWalksGPk0..^FIFk=PkPk+1