Metamath Proof Explorer


Theorem upgriswlk

Description: Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021) (Revised by AV, 28-Oct-2021)

Ref Expression
Hypotheses upgriswlk.v V=VtxG
upgriswlk.i I=iEdgG
Assertion upgriswlk GUPGraphFWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1

Proof

Step Hyp Ref Expression
1 upgriswlk.v V=VtxG
2 upgriswlk.i I=iEdgG
3 1 2 iswlkg GUPGraphFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
4 df-ifp if-Pk=Pk+1IFk=PkPkPk+1IFkPk=Pk+1IFk=Pk¬Pk=Pk+1PkPk+1IFk
5 dfsn2 Pk=PkPk
6 preq2 Pk=Pk+1PkPk=PkPk+1
7 5 6 eqtrid Pk=Pk+1Pk=PkPk+1
8 7 eqeq2d Pk=Pk+1IFk=PkIFk=PkPk+1
9 8 biimpa Pk=Pk+1IFk=PkIFk=PkPk+1
10 9 a1d Pk=Pk+1IFk=PkGUPGraphFWorddomIP:0FVk0..^FIFk=PkPk+1
11 eqid EdgG=EdgG
12 2 11 upgredginwlk GUPGraphFWorddomIk0..^FIFkEdgG
13 12 adantrr GUPGraphFWorddomIP:0FVk0..^FIFkEdgG
14 13 imp GUPGraphFWorddomIP:0FVk0..^FIFkEdgG
15 simp-4l GUPGraphFWorddomIP:0FVk0..^FIFkEdgG¬Pk=Pk+1PkPk+1IFkGUPGraph
16 simpr GUPGraphFWorddomIP:0FVk0..^FIFkEdgGIFkEdgG
17 16 adantr GUPGraphFWorddomIP:0FVk0..^FIFkEdgG¬Pk=Pk+1PkPk+1IFkIFkEdgG
18 simpr ¬Pk=Pk+1PkPk+1IFkPkPk+1IFk
19 18 adantl GUPGraphFWorddomIP:0FVk0..^FIFkEdgG¬Pk=Pk+1PkPk+1IFkPkPk+1IFk
20 fvexd ¬Pk=Pk+1PkV
21 fvexd ¬Pk=Pk+1Pk+1V
22 neqne ¬Pk=Pk+1PkPk+1
23 20 21 22 3jca ¬Pk=Pk+1PkVPk+1VPkPk+1
24 23 adantr ¬Pk=Pk+1PkPk+1IFkPkVPk+1VPkPk+1
25 24 adantl GUPGraphFWorddomIP:0FVk0..^FIFkEdgG¬Pk=Pk+1PkPk+1IFkPkVPk+1VPkPk+1
26 1 11 upgredgpr GUPGraphIFkEdgGPkPk+1IFkPkVPk+1VPkPk+1PkPk+1=IFk
27 15 17 19 25 26 syl31anc GUPGraphFWorddomIP:0FVk0..^FIFkEdgG¬Pk=Pk+1PkPk+1IFkPkPk+1=IFk
28 27 eqcomd GUPGraphFWorddomIP:0FVk0..^FIFkEdgG¬Pk=Pk+1PkPk+1IFkIFk=PkPk+1
29 28 exp31 GUPGraphFWorddomIP:0FVk0..^FIFkEdgG¬Pk=Pk+1PkPk+1IFkIFk=PkPk+1
30 14 29 mpd GUPGraphFWorddomIP:0FVk0..^F¬Pk=Pk+1PkPk+1IFkIFk=PkPk+1
31 30 com12 ¬Pk=Pk+1PkPk+1IFkGUPGraphFWorddomIP:0FVk0..^FIFk=PkPk+1
32 10 31 jaoi Pk=Pk+1IFk=Pk¬Pk=Pk+1PkPk+1IFkGUPGraphFWorddomIP:0FVk0..^FIFk=PkPk+1
33 32 com12 GUPGraphFWorddomIP:0FVk0..^FPk=Pk+1IFk=Pk¬Pk=Pk+1PkPk+1IFkIFk=PkPk+1
34 4 33 biimtrid GUPGraphFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkIFk=PkPk+1
35 ifpprsnss IFk=PkPk+1if-Pk=Pk+1IFk=PkPkPk+1IFk
36 34 35 impbid1 GUPGraphFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkIFk=PkPk+1
37 36 ralbidva GUPGraphFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkk0..^FIFk=PkPk+1
38 37 pm5.32da GUPGraphFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkFWorddomIP:0FVk0..^FIFk=PkPk+1
39 df-3an FWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
40 df-3an FWorddomIP:0FVk0..^FIFk=PkPk+1FWorddomIP:0FVk0..^FIFk=PkPk+1
41 38 39 40 3bitr4g GUPGraphFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkFWorddomIP:0FVk0..^FIFk=PkPk+1
42 3 41 bitrd GUPGraphFWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1