Step |
Hyp |
Ref |
Expression |
1 |
|
upgriswlk.v |
|- V = ( Vtx ` G ) |
2 |
|
upgriswlk.i |
|- I = ( iEdg ` G ) |
3 |
1 2
|
iswlkg |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
4 |
|
df-ifp |
|- ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
5 |
|
dfsn2 |
|- { ( P ` k ) } = { ( P ` k ) , ( P ` k ) } |
6 |
|
preq2 |
|- ( ( P ` k ) = ( P ` ( k + 1 ) ) -> { ( P ` k ) , ( P ` k ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
7 |
5 6
|
eqtrid |
|- ( ( P ` k ) = ( P ` ( k + 1 ) ) -> { ( P ` k ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
8 |
7
|
eqeq2d |
|- ( ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } <-> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
9 |
8
|
biimpa |
|- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
10 |
9
|
a1d |
|- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
11 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
12 |
2 11
|
upgredginwlk |
|- ( ( G e. UPGraph /\ F e. Word dom I ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) ) |
13 |
12
|
adantrr |
|- ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) ) |
14 |
13
|
imp |
|- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) |
15 |
|
simp-4l |
|- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> G e. UPGraph ) |
16 |
|
simpr |
|- ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) |
17 |
16
|
adantr |
|- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) |
18 |
|
simpr |
|- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
19 |
18
|
adantl |
|- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
20 |
|
fvexd |
|- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` k ) e. _V ) |
21 |
|
fvexd |
|- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` ( k + 1 ) ) e. _V ) |
22 |
|
neqne |
|- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
23 |
20 21 22
|
3jca |
|- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
24 |
23
|
adantr |
|- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
25 |
24
|
adantl |
|- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
26 |
1 11
|
upgredgpr |
|- ( ( ( G e. UPGraph /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( I ` ( F ` k ) ) ) |
27 |
15 17 19 25 26
|
syl31anc |
|- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( I ` ( F ` k ) ) ) |
28 |
27
|
eqcomd |
|- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
29 |
28
|
exp31 |
|- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` k ) ) e. ( Edg ` G ) -> ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
30 |
14 29
|
mpd |
|- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
31 |
30
|
com12 |
|- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
32 |
10 31
|
jaoi |
|- ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
33 |
32
|
com12 |
|- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
34 |
4 33
|
syl5bi |
|- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
35 |
|
ifpprsnss |
|- ( ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
36 |
34 35
|
impbid1 |
|- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
37 |
36
|
ralbidva |
|- ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
38 |
37
|
pm5.32da |
|- ( G e. UPGraph -> ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
39 |
|
df-3an |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
40 |
|
df-3an |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
41 |
38 39 40
|
3bitr4g |
|- ( G e. UPGraph -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
42 |
3 41
|
bitrd |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |