Step |
Hyp |
Ref |
Expression |
1 |
|
edginwlk.i |
|- I = ( iEdg ` G ) |
2 |
|
edginwlk.e |
|- E = ( Edg ` G ) |
3 |
|
upgruhgr |
|- ( G e. UPGraph -> G e. UHGraph ) |
4 |
1
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
5 |
3 4
|
syl |
|- ( G e. UPGraph -> Fun I ) |
6 |
1 2
|
edginwlk |
|- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` K ) ) e. E ) |
7 |
6
|
3expia |
|- ( ( Fun I /\ F e. Word dom I ) -> ( K e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` K ) ) e. E ) ) |
8 |
5 7
|
sylan |
|- ( ( G e. UPGraph /\ F e. Word dom I ) -> ( K e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` K ) ) e. E ) ) |