| Step |
Hyp |
Ref |
Expression |
| 1 |
|
edginwlk.i |
|- I = ( iEdg ` G ) |
| 2 |
|
edginwlk.e |
|- E = ( Edg ` G ) |
| 3 |
|
simp1 |
|- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> Fun I ) |
| 4 |
|
wrdsymbcl |
|- ( ( F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` K ) e. dom I ) |
| 5 |
4
|
3adant1 |
|- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` K ) e. dom I ) |
| 6 |
|
fvelrn |
|- ( ( Fun I /\ ( F ` K ) e. dom I ) -> ( I ` ( F ` K ) ) e. ran I ) |
| 7 |
3 5 6
|
syl2anc |
|- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` K ) ) e. ran I ) |
| 8 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 9 |
1
|
eqcomi |
|- ( iEdg ` G ) = I |
| 10 |
9
|
rneqi |
|- ran ( iEdg ` G ) = ran I |
| 11 |
2 8 10
|
3eqtri |
|- E = ran I |
| 12 |
7 11
|
eleqtrrdi |
|- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` K ) ) e. E ) |