Metamath Proof Explorer


Theorem edginwlk

Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021) (Revised by AV, 9-Dec-2021)

Ref Expression
Hypotheses edginwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
edginwlk.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion edginwlk ( ( Fun 𝐼𝐹 ∈ Word dom 𝐼𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹𝐾 ) ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 edginwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
2 edginwlk.e 𝐸 = ( Edg ‘ 𝐺 )
3 simp1 ( ( Fun 𝐼𝐹 ∈ Word dom 𝐼𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun 𝐼 )
4 wrdsymbcl ( ( 𝐹 ∈ Word dom 𝐼𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹𝐾 ) ∈ dom 𝐼 )
5 4 3adant1 ( ( Fun 𝐼𝐹 ∈ Word dom 𝐼𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹𝐾 ) ∈ dom 𝐼 )
6 fvelrn ( ( Fun 𝐼 ∧ ( 𝐹𝐾 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹𝐾 ) ) ∈ ran 𝐼 )
7 3 5 6 syl2anc ( ( Fun 𝐼𝐹 ∈ Word dom 𝐼𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹𝐾 ) ) ∈ ran 𝐼 )
8 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
9 1 eqcomi ( iEdg ‘ 𝐺 ) = 𝐼
10 9 rneqi ran ( iEdg ‘ 𝐺 ) = ran 𝐼
11 2 8 10 3eqtri 𝐸 = ran 𝐼
12 7 11 eleqtrrdi ( ( Fun 𝐼𝐹 ∈ Word dom 𝐼𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹𝐾 ) ) ∈ 𝐸 )