Metamath Proof Explorer


Theorem edginwlk

Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021) (Revised by AV, 9-Dec-2021)

Ref Expression
Hypotheses edginwlk.i I=iEdgG
edginwlk.e E=EdgG
Assertion edginwlk FunIFWorddomIK0..^FIFKE

Proof

Step Hyp Ref Expression
1 edginwlk.i I=iEdgG
2 edginwlk.e E=EdgG
3 simp1 FunIFWorddomIK0..^FFunI
4 wrdsymbcl FWorddomIK0..^FFKdomI
5 4 3adant1 FunIFWorddomIK0..^FFKdomI
6 fvelrn FunIFKdomIIFKranI
7 3 5 6 syl2anc FunIFWorddomIK0..^FIFKranI
8 edgval EdgG=raniEdgG
9 1 eqcomi iEdgG=I
10 9 rneqi raniEdgG=ranI
11 2 8 10 3eqtri E=ranI
12 7 11 eleqtrrdi FunIFWorddomIK0..^FIFKE