Metamath Proof Explorer


Theorem upgredgpr

Description: If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020)

Ref Expression
Hypotheses upgredg.v V=VtxG
upgredg.e E=EdgG
Assertion upgredgpr GUPGraphCEABCAUBWABAB=C

Proof

Step Hyp Ref Expression
1 upgredg.v V=VtxG
2 upgredg.e E=EdgG
3 1 2 upgredg GUPGraphCEaVbVC=ab
4 3 3adant3 GUPGraphCEABCaVbVC=ab
5 ssprsseq AUBWABABabAB=ab
6 5 biimpd AUBWABABabAB=ab
7 sseq2 C=abABCABab
8 eqeq2 C=abAB=CAB=ab
9 7 8 imbi12d C=abABCAB=CABabAB=ab
10 6 9 imbitrrid C=abAUBWABABCAB=C
11 10 com23 C=abABCAUBWABAB=C
12 11 a1i aVbVC=abABCAUBWABAB=C
13 12 rexlimivv aVbVC=abABCAUBWABAB=C
14 13 com12 ABCaVbVC=abAUBWABAB=C
15 14 3ad2ant3 GUPGraphCEABCaVbVC=abAUBWABAB=C
16 4 15 mpd GUPGraphCEABCAUBWABAB=C
17 16 imp GUPGraphCEABCAUBWABAB=C